1887

Abstract

The gut microbiota has been shown to be involved in host energy homeostasis and diet-induced metabolic disorders. To gain insight into the relationships among diet, microbiota and the host, we evaluated the effects of a high-fat (HF) diet on the gut bacterial community in weaning mice. C57BL/6 mice were fed either a control diet or a diet enriched with soy oil for 1 and 2 weeks. Administration of the HF diet caused an increase in plasma total cholesterol levels, while no significant differences in body weight gain were observed between the two diets. Denaturing gradient gel electrophoresis (DGGE) profiles indicated considerable variations in the caecal microbial communities of mice on the HF diet, as compared with controls. Two DGGE bands with reduced intensities in HF-fed mice were identified as representing and an uncultured species, whereas a band of increased intensity was identified as representing a -related species upon sequencing. Quantitative real-time PCR confirmed a statistically significant 1-log decrease in cell numbers after HF feeding, and revealed a significantly lower level of spp. in the control groups after 1 and 2 weeks compared with that in the HF groups. These alterations of intestinal microbiota were not associated with caecum inflammation, as assessed by histological analysis. The observed shifts of specific bacterial populations within the gut may represent an early consequence of increased dietary fat.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.054247-0
2012-04-01
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/4/983.html?itemId=/content/journal/micro/10.1099/mic.0.054247-0&mimeType=html&fmt=ahah

References

  1. Bäckhed F. , Manchester J. K. , Semenkovich C. F. , Gordon J. I. . ( 2007; ). Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. . Proc Natl Acad Sci U S A 104:, 979–984. [CrossRef] [PubMed]
    [Google Scholar]
  2. Barman M. , Unold D. , Shifley K. , Amir E. , Hung K. , Bos N. , Salzman N. . ( 2008; ). Enteric salmonellosis disrupts the microbial ecology of the murine gastrointestinal tract. . Infect Immun 76:, 907–915. [CrossRef] [PubMed]
    [Google Scholar]
  3. Bartosch S. , Fite A. , Macfarlane G. T. , McMurdo M. E. T. . ( 2004; ). Characterization of bacterial communities in feces from healthy elderly volunteers and hospitalized elderly patients by using real-time PCR and effects of antibiotic treatment on the fecal microbiota. . Appl Environ Microbiol 70:, 3575–3581. [CrossRef] [PubMed]
    [Google Scholar]
  4. Bernstein C. N. , Shanahan F. . ( 2008; ). Disorders of a modern lifestyle: reconciling the epidemiology of inflammatory bowel diseases. . Gut 57:, 1185–1191. [CrossRef] [PubMed]
    [Google Scholar]
  5. Byun R. , Nadkarni M. A. , Chhour K.-L. , Martin F. E. , Jacques N. A. , Hunter N. . ( 2004; ). Quantitative analysis of diverse Lactobacillus species present in advanced dental caries. . J Clin Microbiol 42:, 3128–3136. [CrossRef] [PubMed]
    [Google Scholar]
  6. Calder P. C. . ( 2003; ). n-3 Polyunsaturated fatty acids and inflammation: from molecular biology to the clinic. . Lipids 38:, 343–352. [CrossRef] [PubMed]
    [Google Scholar]
  7. Calder P. C. . ( 2008; ). Polyunsaturated fatty acids, inflammatory processes and inflammatory bowel diseases. . Mol Nutr Food Res 52:, 885–897. [CrossRef] [PubMed]
    [Google Scholar]
  8. Cani P. D. , Amar J. , Iglesias M. A. , Poggi M. , Knauf C. , Bastelica D. , Neyrinck A. M. , Fava F. , Tuohy K. M. . & other authors ( 2007; ). Metabolic endotoxemia initiates obesity and insulin resistance. . Diabetes 56:, 1761–1772. [CrossRef] [PubMed]
    [Google Scholar]
  9. Cani P. D. , Bibiloni R. , Knauf C. , Waget A. , Neyrinck A. M. , Delzenne N. M. , Burcelin R. . ( 2008; ). Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. . Diabetes 57:, 1470–1481. [CrossRef] [PubMed]
    [Google Scholar]
  10. de La Serre C. B. , Ellis C. L. , Lee J. , Hartman A. L. , Rutledge J. C. , Raybould H. E. . ( 2010; ). Propensity to high-fat diet-induced obesity in rats is associated with changes in the gut microbiota and gut inflammation. . Am J Physiol Gastrointest Liver Physiol 299:, G440–G448. [CrossRef] [PubMed]
    [Google Scholar]
  11. Diaz R. L. , Hoang L. , Wang J. , Vela J. L. , Jenkins S. , Aranda R. , Martín M. G. . ( 2004; ). Maternal adaptive immunity influences the intestinal microflora of suckling mice. . J Nutr 134:, 2359–2364.[PubMed]
    [Google Scholar]
  12. Ding S. , Chi M. M. , Scull B. P. , Rigby R. , Schwerbrock N. M. , Magness S. , Jobin C. , Lund P. K. . ( 2010; ). High-fat diet: bacteria interactions promote intestinal inflammation which precedes and correlates with obesity and insulin resistance in mouse. . PLoS ONE 5:, e12191. [CrossRef] [PubMed]
    [Google Scholar]
  13. Eckburg P. B. , Bik E. M. , Bernstein C. N. , Purdom E. , Dethlefsen L. , Sargent M. , Gill S. R. , Nelson K. E. , Relman D. A. . ( 2005; ). Diversity of the human intestinal microbial flora. . Science 308:, 1635–1638. [CrossRef] [PubMed]
    [Google Scholar]
  14. Flint H. J. , Duncan S. H. , Scott K. P. , Louis P. . ( 2007; ). Interactions and competition within the microbial community of the human colon: links between diet and health. . Environ Microbiol 9:, 1101–1111. [CrossRef] [PubMed]
    [Google Scholar]
  15. Gallou-Kabani C. , Vigé A. , Gross M. S. , Rabès J. P. , Boileau C. , Larue-Achagiotis C. , Tomé D. , Jais J. P. , Junien C. . ( 2007; ). C57BL/6J and A/J mice fed a high-fat diet delineate components of metabolic syndrome. . Obesity (Silver Spring) 15:, 1996–2005. [CrossRef] [PubMed]
    [Google Scholar]
  16. Hamad E. M. , Sato M. , Uzu K. , Yoshida T. , Higashi S. , Kawakami H. , Kadooka Y. , Matsuyama H. , Abd El-Gawad I. A. , Imaizumi K. . ( 2009; ). Milk fermented by Lactobacillus gasseri SBT2055 influences adipocyte size via inhibition of dietary fat absorption in Zucker rats. . Br J Nutr 101:, 716–724. [CrossRef] [PubMed]
    [Google Scholar]
  17. Hildebrandt M. A. , Hoffmann C. , Sherrill-Mix S. A. , Keilbaugh S. A. , Hamady M. , Chen Y. Y. , Knight R. , Ahima R. S. , Bushman F. , Wu G. D. . ( 2009; ). High-fat diet determines the composition of the murine gut microbiome independently of obesity. . Gastroenterology 137:, 1716–1724, e1–e2. [CrossRef] [PubMed]
    [Google Scholar]
  18. Kadooka Y. , Sato M. , Imaizumi K. , Ogawa A. , Ikuyama K. , Akai Y. , Okano M. , Kagoshima M. , Tsuchida T. . ( 2010; ). Regulation of abdominal adiposity by probiotics (Lactobacillus gasseri SBT2055) in adults with obese tendencies in a randomized controlled trial. . Eur J Clin Nutr 64:, 636–643.[PubMed] [CrossRef]
    [Google Scholar]
  19. Li M. , Wang B. , Zhang M. , Rantalainen M. , Wang S. , Zhou H. , Zhang Y. , Shen J. , Pang X. . & other authors ( 2008; ). Symbiotic gut microbes modulate human metabolic phenotypes. . Proc Natl Acad Sci U S A 105:, 2117–2122. [CrossRef] [PubMed]
    [Google Scholar]
  20. Lu Y. C. , Yeh W. C. , Ohashi P. S. . ( 2008; ). LPS/TLR4 signal transduction pathway. . Cytokine 42:, 145–151. [CrossRef] [PubMed]
    [Google Scholar]
  21. Malinen E. , Rinttilä T. , Kajander K. , Mättö J. , Kassinen A. , Krogius L. , Saarela M. , Korpela R. , Palva A. . ( 2005; ). Analysis of the fecal microbiota of irritable bowel syndrome patients and healthy controls with real-time PCR. . Am J Gastroenterol 100:, 373–382. [CrossRef] [PubMed]
    [Google Scholar]
  22. Marco M. L. , Bongers R. S. , de Vos W. M. , Kleerebezem M. . ( 2007; ). Spatial and temporal expression of Lactobacillus plantarum genes in the gastrointestinal tracts of mice. . Appl Environ Microbiol 73:, 124–132. [CrossRef] [PubMed]
    [Google Scholar]
  23. Maukonen J. , Mättö J. , Satokari R. , Söderlund H. , Mattila-Sandholm T. , Saarela M. . ( 2006; ). PCR DGGE and RT-PCR DGGE show diversity and short-term temporal stability in the Clostridium coccoidesEubacterium rectale group in the human intestinal microbiota. . FEMS Microbiol Ecol 58:, 517–528. [CrossRef] [PubMed]
    [Google Scholar]
  24. Nadkarni M. A. , Martin F. E. , Jacques N. A. , Hunter N. . ( 2002; ). Determination of bacterial load by real-time PCR using a broad-range (universal) probe and primers set. . Microbiology 148:, 257–266.[PubMed]
    [Google Scholar]
  25. Penders J. , Vink C. , Driessen C. , London N. , Thijs C. , Stobberingh E. E. . ( 2005; ). Quantification of Bifidobacterium spp., Escherichia coli and Clostridium difficile in faecal samples of breast-fed and formula-fed infants by real-time PCR. . FEMS Microbiol Lett 243:, 141–147. [CrossRef] [PubMed]
    [Google Scholar]
  26. Reniero R. , Cocconcelli P. , Bottazzi V. , Morelli L. . ( 1992; ). High frequency of conjugation in Lactobacillus mediated by an aggregation-promoting factor. . J Gen Microbiol 138:, 763–768.[CrossRef]
    [Google Scholar]
  27. Rinttilä T. , Kassinen A. , Malinen E. , Krogius L. , Palva A. . ( 2004; ). Development of an extensive set of 16S rDNA-targeted primers for quantification of pathogenic and indigenous bacteria in faecal samples by real-time PCR. . J Appl Microbiol 97:, 1166–1177. [CrossRef] [PubMed]
    [Google Scholar]
  28. Round J. L. , Mazmanian S. K. . ( 2009; ). The gut microbiota shapes intestinal immune responses during health and disease. . Nat Rev Immunol 9:, 313–323. [CrossRef] [PubMed]
    [Google Scholar]
  29. Schell M. A. , Karmirantzou M. , Snel B. , Vilanova D. , Berger B. , Pessi G. , Zwahlen M.-C. , Desiere F. , Bork P. . & other authors ( 2002; ). The genome sequence of Bifidobacterium longum reflects its adaptation to the human gastrointestinal tract. . Proc Natl Acad Sci U S A 99:, 14422–14427. [CrossRef] [PubMed]
    [Google Scholar]
  30. Schuppler M. , Lötzsch K. , Waidmann M. , Autenrieth I. B. . ( 2004; ). An abundance of Escherichia coli is harbored by the mucosa-associated bacterial flora of interleukin-2-deficient mice. . Infect Immun 72:, 1983–1990. [CrossRef] [PubMed]
    [Google Scholar]
  31. Sekirov I. , Finlay B. B. . ( 2009; ). The role of the intestinal microbiota in enteric infection. . J Physiol 587:, 4159–4167. [CrossRef] [PubMed]
    [Google Scholar]
  32. Shi H. , Kokoeva M. V. , Inouye K. , Tzameli I. , Yin H. , Flier J. S. . ( 2006; ). TLR4 links innate immunity and fatty acid-induced insulin resistance. . J Clin Invest 116:, 3015–3025. [CrossRef] [PubMed]
    [Google Scholar]
  33. Shoelson S. E. , Herrero L. , Naaz A. . ( 2007; ). Obesity, inflammation, and insulin resistance. . Gastroenterology 132:, 2169–2180. [CrossRef] [PubMed]
    [Google Scholar]
  34. Takemura N. , Hagio M. , Ishizuka S. , Ito H. , Morita T. , Sonoyama K. . ( 2010; ). Inulin prolongs survival of intragastrically administered Lactobacillus plantarum no. 14 in the gut of mice fed a high-fat diet. . J Nutr 140:, 1963–1969. [CrossRef] [PubMed]
    [Google Scholar]
  35. Turnbaugh P. J. , Bäckhed F. , Fulton L. , Gordon J. I. . ( 2008; ). Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. . Cell Host Microbe 3:, 213–223. [CrossRef] [PubMed]
    [Google Scholar]
  36. Turnbaugh P. J. , Ridaura V. K. , Faith J. J. , Rey F. E. , Knight R. , Gordon J. I. . ( 2009; ). The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. . Sci Transl Med 1:, ra14. [CrossRef] [PubMed]
    [Google Scholar]
  37. Usman , Hosono A. . ( 2001; ). Hypocholesterolemic effect of Lactobacillus gasseri SBT0270 in rats fed a cholesterol-enriched diet. . J Dairy Res 68:, 617–624. [CrossRef] [PubMed]
    [Google Scholar]
  38. Walter J. , Tannock G. W. , Tilsala-Timisjarvi A. , Rodtong S. , Loach D. M. , Munro K. , Alatossava T. . ( 2000; ). Detection and identification of gastrointestinal Lactobacillus species by using denaturing gradient gel electrophoresis and species-specific PCR primers. . Appl Environ Microbiol 66:, 297–303. [CrossRef] [PubMed]
    [Google Scholar]
  39. Wen L. , Ley R. E. , Volchkov P. Y. , Stranges P. B. , Avanesyan L. , Stonebraker A. C. , Hu C. , Wong F. S. , Szot G. L. . & other authors ( 2008; ). Innate immunity and intestinal microbiota in the development of type 1 diabetes. . Nature 455:, 1109–1113. [CrossRef] [PubMed]
    [Google Scholar]
  40. Yun S. I. , Park H. O. , Kang J. H. . ( 2009; ). Effect of Lactobacillus gasseri BNR17 on blood glucose levels and body weight in a mouse model of type 2 diabetes. . J Appl Microbiol 107:, 1681–1686. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.054247-0
Loading
/content/journal/micro/10.1099/mic.0.054247-0
Loading

Data & Media loading...

Supplements

Figs S1 - S4 

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error