1887

Abstract

The bacterial second messenger cyclic diguanosine monophosphate (c-di-GMP) plays an important role in a variety of cellular functions, including biofilm formation, alterations in the cell surface, host colonization and regulation of bacterial flagellar motility, which enable bacteria to survive changing environmental conditions. The cellular level of c-di-GMP is regulated by a balance between opposing activities of diguanylate cyclases (DGCs) and cognate phosphodiesterases (PDE-As). Here, we report the presence and importance of a protein, MSDGC-1 (an orthologue of Rv1354c in ), involved in c-di-GMP turnover in . MSDGC-1 is a multidomain protein, having GAF, GGDEF and EAL domains arranged in tandem, and exhibits both c-di-GMP synthesis and degradation activities. Most other proteins containing GGDEF and EAL domains have been demonstrated to have either DGC or PDE-A activity. Unlike other bacteria, which harbour several copies of the protein involved in c-di-GMP turnover, has a single genomic copy, deletion of which severely affects long-term survival under conditions of nutrient starvation. Overexpression of MSDGC-1 alters the colony morphology and growth profile of . In order to gain insights into the regulation of the c-di-GMP level, we cloned individual domains and tested their activities. We observed a loss of activity in the separated domains, indicating the importance of full-length MSDGC-1 for controlling bifunctionality.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.053892-0
2012-06-01
2019-10-17
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/6/1415.html?itemId=/content/journal/micro/10.1099/mic.0.053892-0&mimeType=html&fmt=ahah

References

  1. Armitage J. P., Berry R. M.. ( 2010;). Time for bacteria to slow down. . Cell 141:, 24–26. [CrossRef][PubMed]
    [Google Scholar]
  2. Bassler B. L.. ( 1999;). How bacteria talk to each other: regulation of gene expression by quorum sensing. . Curr Opin Microbiol 2:, 582–587. [CrossRef][PubMed]
    [Google Scholar]
  3. Beyhan S., Tischler A. D., Camilli A., Yildiz F. H.. ( 2006;). Transcriptome and phenotypic responses of Vibrio cholerae to increased cyclic di-GMP level. . J Bacteriol 188:, 3600–3613. [CrossRef][PubMed]
    [Google Scholar]
  4. Boehm A., Kaiser M., Li H., Spangler C., Kasper C. A., Ackermann M., Kaever V., Sourjik V., Roth V., Jenal U.. ( 2010;). Second messenger-mediated adjustment of bacterial swimming velocity. . Cell 141:, 107–116. [CrossRef][PubMed]
    [Google Scholar]
  5. Brouillette E., Hyodo M., Hayakawa Y., Karaolis D. K., Malouin F.. ( 2005;). 3′,5′-cyclic diguanylic acid reduces the virulence of biofilm-forming Staphylococcus aureus strains in a mouse model of mastitis infection. . Antimicrob Agents Chemother 49:, 3109–3113. [CrossRef][PubMed]
    [Google Scholar]
  6. Camilli A., Bassler B. L.. ( 2006;). Bacterial small-molecule signaling pathways. . Science 311:, 1113–1116. [CrossRef][PubMed]
    [Google Scholar]
  7. Chatterji D., Ojha A. K.. ( 2001;). Revisiting the stringent response, ppGpp and starvation signaling. . Curr Opin Microbiol 4:, 160–165. [CrossRef][PubMed]
    [Google Scholar]
  8. Christen M., Christen B., Folcher M., Schauerte A., Jenal U.. ( 2005;). Identification and characterization of a cyclic di-GMP-specific phosphodiesterase and its allosteric control by GTP. . J Biol Chem 280:, 30829–30837. [CrossRef][PubMed]
    [Google Scholar]
  9. Christen B., Christen M., Paul R., Schmid F., Folcher M., Jenoe P., Meuwly M., Jenal U.. ( 2006;). Allosteric control of cyclic di-GMP signaling. . J Biol Chem 281:, 32015–32024. [CrossRef][PubMed]
    [Google Scholar]
  10. D’Argenio D. A., Calfee M. W., Rainey P. B., Pesci E. C.. ( 2002;). Autolysis and autoaggregation in Pseudomonas aeruginosa colony morphology mutants. . J Bacteriol 184:, 6481–6489. [CrossRef][PubMed]
    [Google Scholar]
  11. Dahl J. L., Arora K., Boshoff H. I., Whiteford D. C., Pacheco S. A., Walsh O. J., Lau-Bonilla D., Davis W. B., Garza A. G.. ( 2005;). The relA homolog of Mycobacterium smegmatis affects cell appearance, viability, and gene expression. . J Bacteriol 187:, 2439–2447. [CrossRef][PubMed]
    [Google Scholar]
  12. Dow J. M., Fouhy Y., Lucey J. F., Ryan R. P.. ( 2006;). The HD-GYP domain, cyclic di-GMP signaling, and bacterial virulence to plants. . Mol Plant Microbe Interact 19:, 1378–1384. [CrossRef][PubMed]
    [Google Scholar]
  13. Etienne G., Villeneuve C., Billman-Jacobe H., Astarie-Dequeker C., Dupont M. A., Daffé M.. ( 2002;). The impact of the absence of glycopeptidolipids on the ultrastructure, cell surface and cell wall properties, and phagocytosis of Mycobacterium smegmatis. . Microbiology 148:, 3089–3100.[PubMed]
    [Google Scholar]
  14. Galperin M. Y., Natale D. A., Aravind L., Koonin E. V.. ( 1999;). A specialized version of the HD hydrolase domain implicated in signal transduction. . J Mol Microbiol Biotechnol 1:, 303–305.[PubMed]
    [Google Scholar]
  15. Galperin M. Y., Nikolskaya A. N., Koonin E. V.. ( 2001;). Novel domains of the prokaryotic two-component signal transduction systems. . FEMS Microbiol Lett 203:, 11–21. [CrossRef][PubMed]
    [Google Scholar]
  16. Gupta K., Kumar P., Chatterji D.. ( 2010;). Identification, activity and disulfide connectivity of c-di-GMP regulating proteins in Mycobacterium tuberculosis. . PLoS ONE 5:, e15072. [CrossRef][PubMed]
    [Google Scholar]
  17. Hickman J. W., Tifrea D. F., Harwood C. S.. ( 2005;). A chemosensory system that regulates biofilm formation through modulation of cyclic diguanylate levels. . Proc Natl Acad Sci U S A 102:, 14422–14427. [CrossRef][PubMed]
    [Google Scholar]
  18. Hurley J. H.. ( 2003;). GAF domains: cyclic nucleotides come full circle. . Sci STKE 2003:, PE1. [CrossRef][PubMed]
    [Google Scholar]
  19. Jacobs W. R. Jr, Tuckman M., Bloom B. R.. ( 1987;). Introduction of foreign DNA into mycobacteria using a shuttle phasmid. . Nature 327:, 532–535. [CrossRef][PubMed]
    [Google Scholar]
  20. Jain V., Saleem-Batcha R., China A., Chatterji D.. ( 2006;). Molecular dissection of the mycobacterial stringent response protein Rel. . Protein Sci 15:, 1449–1464. [CrossRef][PubMed]
    [Google Scholar]
  21. Jenal U., Malone J.. ( 2006;). Mechanisms of cyclic-di-GMP signaling in bacteria. . Annu Rev Genet 40:, 385–407. [CrossRef][PubMed]
    [Google Scholar]
  22. Karaolis D. K., Rashid M. H., Chythanya R., Luo W., Hyodo M., Hayakawa Y.. ( 2005;). c-di-GMP (3′-5′-cyclic diguanylic acid) inhibits Staphylococcus aureus cell-cell interactions and biofilm formation. . Antimicrob Agents Chemother 49:, 1029–1038. [CrossRef][PubMed]
    [Google Scholar]
  23. Kazmierczak B. I., Lebron M. B., Murray T. S.. ( 2006;). Analysis of FimX, a phosphodiesterase that governs twitching motility in Pseudomonas aeruginosa. . Mol Microbiol 60:, 1026–1043. [CrossRef][PubMed]
    [Google Scholar]
  24. Kirillina O., Fetherston J. D., Bobrov A. G., Abney J., Perry R. D.. ( 2004;). HmsP, a putative phosphodiesterase, and HmsT, a putative diguanylate cyclase, control Hms-dependent biofilm formation in Yersinia pestis. . Mol Microbiol 54:, 75–88. [CrossRef][PubMed]
    [Google Scholar]
  25. Kuchma S. L., Brothers K. M., Merritt J. H., Liberati N. T., Ausubel F. M., O’Toole G. A.. ( 2007;). BifA, a cyclic-di-GMP phosphodiesterase, inversely regulates biofilm formation and swarming motility by Pseudomonas aeruginosa PA14. . J Bacteriol 189:, 8165–8178. [CrossRef][PubMed]
    [Google Scholar]
  26. Levet-Paulo M., Lazzaroni J. C., Gilbert C., Atlan D., Doublet P., Vianney A.. ( 2011;). The atypical two-component sensor kinase Lpl0330 from Legionella pneumophila controls the bifunctional diguanylate cyclase-phosphodiesterase Lpl0329 to modulate bis-(3′-5′)-cyclic dimeric GMP synthesis. . J Biol Chem 286:, 31136–31144. [CrossRef][PubMed]
    [Google Scholar]
  27. Mathew R., Mukherjee R., Balachandar R., Chatterji D.. ( 2006;). Deletion of the rpoZ gene, encoding the omega subunit of RNA polymerase, results in pleiotropic surface-related phenotypes in Mycobacterium smegmatis. . Microbiology 152:, 1741–1750. [CrossRef][PubMed]
    [Google Scholar]
  28. Merritt J. H., Brothers K. M., Kuchma S. L., O’Toole G. A.. ( 2007;). SadC reciprocally influences biofilm formation and swarming motility via modulation of exopolysaccharide production and flagellar function. . J Bacteriol 189:, 8154–8164. [CrossRef][PubMed]
    [Google Scholar]
  29. Merritt J. H., Ha D. G., Cowles K. N., Lu W., Morales D. K., Rabinowitz J., Gitai Z., O’Toole G. A.. ( 2010;). Specific control of Pseudomonas aeruginosa surface-associated behaviors by two c-di-GMP diguanylate cyclases. . MBio 1:, e00183–10. [CrossRef][PubMed]
    [Google Scholar]
  30. Miller M. B., Bassler B. L.. ( 2001;). Quorum sensing in bacteria. . Annu Rev Microbiol 55:, 165–199. [CrossRef][PubMed]
    [Google Scholar]
  31. Naresh K., Bharati B. K., Avaji P. G., Jayaraman N., Chatterji D.. ( 2010;). Synthetic arabinomannan glycolipids and their effects on growth and motility of the Mycobacterium smegmatis. . Org Biomol Chem 8:, 592–599. [CrossRef][PubMed]
    [Google Scholar]
  32. O’Toole G. A., Pratt L. A., Watnick P. I., Newman D. K., Weaver V. B., Kolter R.. ( 1999;). Genetic approaches to study of biofilms. . Methods Enzymol 310:, 91–109. [CrossRef][PubMed]
    [Google Scholar]
  33. Ojha A. K., Mukherjee T. K., Chatterji D.. ( 2000;). High intracellular level of guanosine tetraphosphate in Mycobacterium smegmatis changes the morphology of the bacterium. . Infect Immun 68:, 4084–4091. [CrossRef][PubMed]
    [Google Scholar]
  34. Paul R., Weiser S., Amiot N. C., Chan C., Schirmer T., Giese B., Jenal U.. ( 2004;). Cell cycle-dependent dynamic localization of a bacterial response regulator with a novel di-guanylate cyclase output domain. . Genes Dev 18:, 715–727. [CrossRef][PubMed]
    [Google Scholar]
  35. Paul K., Nieto V., Carlquist W. C., Blair D. F., Harshey R. M.. ( 2010;). The c-di-GMP binding protein YcgR controls flagellar motor direction and speed to affect chemotaxis by a “backstop brake” mechanism. . Mol Cell 38:, 128–139. [CrossRef][PubMed]
    [Google Scholar]
  36. Pelicic V., Jackson M., Reyrat J. M., Jacobs W. R. Jr, Gicquel B., Guilhot C.. ( 1997;). Efficient allelic exchange and transposon mutagenesis in Mycobacterium tuberculosis. . Proc Natl Acad Sci U S A 94:, 10955–10960. [CrossRef][PubMed]
    [Google Scholar]
  37. Primm T. P., Andersen S. J., Mizrahi V., Avarbock D., Rubin H., Barry C. E. III. ( 2000;). The stringent response of Mycobacterium tuberculosis is required for long-term survival. . J Bacteriol 182:, 4889–4898. [CrossRef][PubMed]
    [Google Scholar]
  38. Reading N. C., Sperandio V.. ( 2006;). Quorum sensing: the many languages of bacteria. . FEMS Microbiol Lett 254:, 1–11. [CrossRef][PubMed]
    [Google Scholar]
  39. Römling U., Gomelsky M., Galperin M. Y.. ( 2005;). c-di-GMP: the dawning of a novel bacterial signalling system. . Mol Microbiol 57:, 629–639. [CrossRef][PubMed]
    [Google Scholar]
  40. Ross P., Weinhouse H., Aloni Y., Michaeli D., Weinberger-Ohana P., Mayer R., Braun S., de Vroom E., van der Marel G. A. et al. ( 1987;). Regulation of cellulose synthesis in Acetobacter xylinum by cyclic diguanylic acid. . Nature 325:, 279–281. [CrossRef][PubMed]
    [Google Scholar]
  41. Ryjenkov D. A., Tarutina M., Moskvin O. V., Gomelsky M.. ( 2005;). Cyclic diguanylate is a ubiquitous signaling molecule in bacteria: insights into biochemistry of the GGDEF protein domain. . J Bacteriol 187:, 1792–1798. [CrossRef][PubMed]
    [Google Scholar]
  42. Shenoy A. R., Visweswariah S. S.. ( 2006;). New messages from old messengers: cAMP and mycobacteria. . Trends Microbiol 14:, 543–550. [CrossRef][PubMed]
    [Google Scholar]
  43. Simm R., Morr M., Kader A., Nimtz M., Römling U.. ( 2004;). GGDEF and EAL domains inversely regulate cyclic di-GMP levels and transition from sessility to motility. . Mol Microbiol 53:, 1123–1134. [CrossRef][PubMed]
    [Google Scholar]
  44. Smeulders M. J., Keer J., Speight R. A., Williams H. D.. ( 1999;). Adaptation of Mycobacterium smegmatis to stationary phase. . J Bacteriol 181:, 270–283.[PubMed]
    [Google Scholar]
  45. Snapper S. B., Melton R. E., Mustafa S., Kieser T., Jacobs W. R. Jr. ( 1990;). Isolation and characterization of efficient plasmid transformation mutants of Mycobacterium smegmatis. . Mol Microbiol 4:, 1911–1919. [CrossRef][PubMed]
    [Google Scholar]
  46. Stover C. K., de la Cruz V. F., Fuerst T. R., Burlein J. E., Benson L. A., Bennett L. T., Bansal G. P., Young J. F., Lee M. H. et al. ( 1991;). New use of BCG for recombinant vaccines. . Nature 351:, 456–460. [CrossRef][PubMed]
    [Google Scholar]
  47. Taga M. E., Bassler B. L.. ( 2003;). Chemical communication among bacteria. . Proc Natl Acad Sci U S A 100: (Suppl. 2), 14549–14554. [CrossRef][PubMed]
    [Google Scholar]
  48. Tal R., Wong H. C., Calhoon R., Gelfand D., Fear A. L., Volman G., Mayer R., Ross P., Amikam D. et al. ( 1998;). Three cdg operons control cellular turnover of cyclic di-GMP in Acetobacter xylinum: genetic organization and occurrence of conserved domains in isoenzymes. . J Bacteriol 180:, 4416–4425.[PubMed]
    [Google Scholar]
  49. Tamayo R., Pratt J. T., Camilli A.. ( 2007;). Roles of cyclic diguanylate in the regulation of bacterial pathogenesis. . Annu Rev Microbiol 61:, 131–148. [CrossRef][PubMed]
    [Google Scholar]
  50. Tischler A. D., Camilli A.. ( 2004;). Cyclic diguanylate (c-di-GMP) regulates Vibrio cholerae biofilm formation. . Mol Microbiol 53:, 857–869. [CrossRef][PubMed]
    [Google Scholar]
  51. Weinhouse H., Sapir S., Amikam D., Shilo Y., Volman G., Ohana P., Benziman M.. ( 1997;). c-di-GMP-binding protein, a new factor regulating cellulose synthesis in Acetobacter xylinum. . FEBS Lett 416:, 207–211. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.053892-0
Loading
/content/journal/micro/10.1099/mic.0.053892-0
Loading

Data & Media loading...

Supplements

Supplementary figures and table 

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error