1887

Abstract

The virulence of depends on proteins that are produced by this bacterium. The production of virulence proteins depends on environmental factors, and two-component regulatory systems are considered to be involved in sensing these factors. One of the environmental factors is acid stimuli. We established knockout strains in all speculated two-component regulatory sensor proteins of the M1 clinical strain of and examined their relevance to acid stimuli. The parental strain and its derived knockout strains were cultured in a medium adjusted to pH 7.6 or 6.0, and their growth in broth was compared. The sensor knockout strain showed significant growth reduction compared with the parental strain in broth at pH 6.0, suggesting that the Spy1622 two-component sensor protein is involved in sensing acid stimuli. To further examine the role of the Spy1622 two-component sensor protein in virulence, blood bactericidal assays and mouse infection model experiments were performed. We found that the knockout strain was less virulent than the parental strain, which suggests that the Spy1622 two-component sensor protein could play an important role in virulence.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.050534-0
2011-11-01
2020-04-01
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/11/3187.html?itemId=/content/journal/micro/10.1099/mic.0.050534-0&mimeType=html&fmt=ahah

References

  1. Banks D. J., Porcella S. F., Barbian K. D., Beres S. B., Philips L. E., Voyich J. M., DeLeo F. R., Martin J. M., Somerville G. A., Musser J. M.. ( 2004;). Progress toward characterization of the group A Streptococcus metagenome: complete genome sequence of a macrolide-resistant serotype M6 strain. J Infect Dis190:727–738 [CrossRef][PubMed]
    [Google Scholar]
  2. Beckert S., Kreikemeyer B., Podbielski A.. ( 2001;). Group A streptococcal rofA gene is involved in the control of several virulence genes and eukaryotic cell attachment and internalization. Infect Immun69:534–537 [CrossRef][PubMed]
    [Google Scholar]
  3. Beres S. B., Sylva G. L., Barbian K. D., Lei B., Hoff J. S., Mammarella N. D., Liu M. Y., Smoot J. C., Porcella S. F. et al. ( 2002;). Genome sequence of a serotype M3 strain of group A Streptococcus: phage-encoded toxins, the high-virulence phenotype, and clone emergence. Proc Natl Acad Sci U S A99:10078–10083 [CrossRef][PubMed]
    [Google Scholar]
  4. Beres S. B., Richter E. W., Nagiec M. J., Sumby P., Porcella S. F., DeLeo F. R., Musser J. M.. ( 2006;). Molecular genetic anatomy of inter- and intraserotype variation in the human bacterial pathogen group A Streptococcus . Proc Natl Acad Sci U S A103:7059–7064 [CrossRef][PubMed]
    [Google Scholar]
  5. Boyle-Vavra S., Yin S., Daum R. S.. ( 2006;). The VraS/VraR two-component regulatory system required for oxacillin resistance in community-acquired methicillin-resistant Staphylococcus aureus . FEMS Microbiol Lett262:163–171 [CrossRef][PubMed]
    [Google Scholar]
  6. Chaussee M. S., Ajdic D., Ferretti J. J.. ( 1999;). The rgg gene of Streptococcus pyogenes NZ131 positively influences extracellular SPE B production. Infect Immun67:1715–1722[PubMed]
    [Google Scholar]
  7. Chong P., Drake L., Biswas I.. ( 2008;). LiaS regulates virulence factor expression in Streptococcus mutans . Infect Immun76:3093–3099 [CrossRef][PubMed]
    [Google Scholar]
  8. Cone L. A., Woodard D. R., Schlievert P. M., Tomory G. S.. ( 1987;). Clinical and bacteriologic observations of a toxic shock-like syndrome due to Streptococcus pyogenes . N Engl J Med317:146–149 [CrossRef][PubMed]
    [Google Scholar]
  9. Cunningham M. W.. ( 2000;). Pathogenesis of group A streptococcal infections. Clin Microbiol Rev13:470–511 [CrossRef][PubMed]
    [Google Scholar]
  10. Dalton T. L., Scott J. R.. ( 2004;). CovS inactivates CovR and is required for growth under conditions of general stress in Streptococcus pyogenes . J Bacteriol186:3928–3937 [CrossRef][PubMed]
    [Google Scholar]
  11. Eguchi Y., Kubo N., Matsunaga H., Igarashi M., Utsumi R.. ( 2011;). Development of an antivirulence drug against Streptococcus mutans: repression of biofilm formation, acid tolerance, and competence by a histidine kinase inhibitor, walkmycin C. Antimicrob Agents Chemother55:1475–1484 [CrossRef][PubMed]
    [Google Scholar]
  12. Ehrt S., Schnappinger D.. ( 2009;). Mycobacterial survival strategies in the phagosome: defence against host stresses. Cell Microbiol11:1170–1178 [CrossRef][PubMed]
    [Google Scholar]
  13. Fabret C., Feher V. A., Hoch J. A.. ( 1999;). Two-component signal transduction in Bacillus subtilis: how one organism sees its world. J Bacteriol181:1975–1983[PubMed]
    [Google Scholar]
  14. Ferretti J. J., McShan W. M., Ajdic D., Savic D. J., Savic G., Lyon K., Primeaux C., Sezate S., Suvorov A. N. et al. ( 2001;). Complete genome sequence of an M1 strain of Streptococcus pyogenes . Proc Natl Acad Sci U S A98:4658–4663 [CrossRef][PubMed]
    [Google Scholar]
  15. Gardete S., Wu S. W., Gill S., Tomasz A.. ( 2006;). Role of VraSR in antibiotic resistance and antibiotic-induced stress response in Staphylococcus aureus . Antimicrob Agents Chemother50:3424–3434 [CrossRef][PubMed]
    [Google Scholar]
  16. Green N. M., Zhang S., Porcella S. F., Nagiec M. J., Barbian K. D., Beres S. B., LeFebvre R. B., Musser J. M.. ( 2005;). Genome sequence of a serotype M28 strain of group A Streptococcus: potential new insights into puerperal sepsis and bacterial disease specificity. J Infect Dis192:760–770 [CrossRef][PubMed]
    [Google Scholar]
  17. Hancock L., Perego M.. ( 2002;). Two-component signal transduction in Enterococcus faecalis . J Bacteriol184:5819–5825 [CrossRef][PubMed]
    [Google Scholar]
  18. Hasegawa T., Torii K., Hashikawa S., Iinuma Y., Ohta M.. ( 2002a;). Cloning and characterization of two novel DNases from Streptococcus pyogenes . Arch Microbiol177:451–456 [CrossRef][PubMed]
    [Google Scholar]
  19. Hasegawa T., Torii K., Hashikawa S., Iinuma Y., Ohta M.. ( 2002b;). Cloning and characterization of the deoxyribonuclease sdα gene from Streptococcus pyogenes . Curr Microbiol45:13–17 [CrossRef][PubMed]
    [Google Scholar]
  20. Hasegawa T., Minami M., Okamoto A., Tatsuno I., Isaka M., Ohta M.. ( 2010a;). Characterization of a virulence-associated and cell-wall-located DNase of Streptococcus pyogenes . Microbiology156:184–190 [CrossRef][PubMed]
    [Google Scholar]
  21. Hasegawa T., Okamoto A., Kamimura T., Tatsuno I., Hashikawa S. N., Yabutani M., Matsumoto M., Yamada K., Isaka M. et al. ( 2010b;). Detection of invasive protein profile of Streptococcus pyogenes M1 isolates from pharyngitis patients. APMIS118:167–178 [CrossRef][PubMed]
    [Google Scholar]
  22. Hauser A. R., Stevens D. L., Kaplan E. L., Schlievert P. M.. ( 1991;). Molecular analysis of pyrogenic exotoxins from Streptococcus pyogenes isolates associated with toxic shock-like syndrome. J Clin Microbiol29:1562–1567[PubMed]
    [Google Scholar]
  23. Holden M. T., Scott A., Cherevach I., Chillingworth T., Churcher C., Cronin A., Dowd L., Feltwell T., Hamlin N. et al. ( 2007;). Complete genome of acute rheumatic fever-associated serotype M5 Streptococcus pyogenes strain Manfredo. J Bacteriol189:1473–1477 [CrossRef][PubMed]
    [Google Scholar]
  24. Huynh K. K., Grinstein S.. ( 2007;). Regulation of vacuolar pH and its modulation by some microbial species. Microbiol Mol Biol Rev71:452–462 [CrossRef][PubMed]
    [Google Scholar]
  25. Kinchen J. M., Ravichandran K. S.. ( 2008;). Phagosome maturation: going through the acid test. Nat Rev Mol Cell Biol9:781–795 [CrossRef][PubMed]
    [Google Scholar]
  26. Kreikemeyer B., McIver K. S., Podbielski A.. ( 2003;). Virulence factor regulation and regulatory networks in Streptococcus pyogenes and their impact on pathogen–host interactions. Trends Microbiol11:224–232 [CrossRef][PubMed]
    [Google Scholar]
  27. Kunst F., Ogasawara N., Moszer I., Albertini A. M., Alloni G., Azevedo V., Bertero M. G., Bessières P., Bolotin A. et al. ( 1997;). The complete genome sequence of the Gram-positive bacterium Bacillus subtilis . Nature390:249–256 [CrossRef][PubMed]
    [Google Scholar]
  28. Kuroda M., Kuwahara-Arai K., Hiramatsu K.. ( 2000;). Identification of the up- and down-regulated genes in vancomycin-resistant Staphylococcus aureus strains Mu3 and Mu50 by cDNA differential hybridization method. Biochem Biophys Res Commun269:485–490 [CrossRef][PubMed]
    [Google Scholar]
  29. Kuroda M., Kuroda H., Oshima T., Takeuchi F., Mori H., Hiramatsu K.. ( 2003;). Two-component system VraSR positively modulates the regulation of cell-wall biosynthesis pathway in Staphylococcus aureus . Mol Microbiol49:807–821 [CrossRef][PubMed]
    [Google Scholar]
  30. Lancefield R. C.. ( 1957;). Differentiation of group A streptococci with a common R antigen into three serological types, with special reference to the bactericidal test. J Exp Med106:525–544 [CrossRef][PubMed]
    [Google Scholar]
  31. Li Y. H., Lau P. C., Tang N., Svensäter G., Ellen R. P., Cvitkovitch D. G.. ( 2002;). Novel two-component regulatory system involved in biofilm formation and acid resistance in Streptococcus mutans . J Bacteriol184:6333–6342 [CrossRef][PubMed]
    [Google Scholar]
  32. Loughman J. A., Caparon M.. ( 2006;). Regulation of SpeB in Streptococcus pyogenes by pH and NaCl: a model for in vivo gene expression. J Bacteriol188:399–408 [CrossRef][PubMed]
    [Google Scholar]
  33. Lukomski S., Hoe N. P., Abdi I., Rurangirwa J., Kordari P., Liu M., Dou S. J., Adams G. G., Musser J. M.. ( 2000;). Nonpolar inactivation of the hypervariable streptococcal inhibitor of complement gene (sic) in serotype M1 Streptococcus pyogenes significantly decreases mouse mucosal colonization. Infect Immun68:535–542 [CrossRef][PubMed]
    [Google Scholar]
  34. Lyon W. R., Gibson C. M., Caparon M. G.. ( 1998;). A role for trigger factor and an rgg-like regulator in the transcription, secretion and processing of the cysteine proteinase of Streptococcus pyogenes . EMBO J17:6263–6275 [CrossRef][PubMed]
    [Google Scholar]
  35. Manetti A. G., Köller T., Becherelli M., Buccato S., Kreikemeyer B., Podbielski A., Grandi G., Margarit I.. ( 2010;). Environmental acidification drives S. pyogenes pilus expression and microcolony formation on epithelial cells in a FCT-dependent manner. PLoS ONE5:e13864 [CrossRef][PubMed]
    [Google Scholar]
  36. Mascher T.. ( 2006;). Intramembrane-sensing histidine kinases: a new family of cell envelope stress sensors in Firmicutes bacteria. FEMS Microbiol Lett264:133–144 [CrossRef][PubMed]
    [Google Scholar]
  37. Mascher T., Margulis N. G., Wang T., Ye R. W., Helmann J. D.. ( 2003;). Cell wall stress responses in Bacillus subtilis: the regulatory network of the bacitracin stimulon. Mol Microbiol50:1591–1604 [CrossRef][PubMed]
    [Google Scholar]
  38. Mascher T., Zimmer S. L., Smith T. A., Helmann J. D.. ( 2004;). Antibiotic-inducible promoter regulated by the cell envelope stress-sensing two-component system LiaRS of Bacillus subtilis . Antimicrob Agents Chemother48:2888–2896 [CrossRef][PubMed]
    [Google Scholar]
  39. McIver K. S., Heath A. S., Green B. D., Scott J. R.. ( 1995;). Specific binding of the activator Mga to promoter sequences of the emm and scpA genes in the group A streptococcus. J Bacteriol177:6619–6624[PubMed]
    [Google Scholar]
  40. McShan W. M., Ferretti J. J., Karasawa T., Suvorov A. N., Lin S., Qin B., Jia H., Kenton S., Najar F. et al. ( 2008;). Genome sequence of a nephritogenic and highly transformable M49 strain of Streptococcus pyogenes . J Bacteriol190:7773–7785 [CrossRef][PubMed]
    [Google Scholar]
  41. Minami M., Kamimura T., Isaka M., Tatsuno I., Ohta M., Hasegawa T.. ( 2010;). Clindamycin-induced CovS-mediated regulation of the production of virulent exoproteins streptolysin O, NAD glycohydrolase, and streptokinase in Streptococcus pyogenes . Antimicrob Agents Chemother54:98–102 [CrossRef][PubMed]
    [Google Scholar]
  42. Molinari G., Rohde M., Talay S. R., Chhatwal G. S., Beckert S., Podbielski A.. ( 2001;). The role played by the group A streptococcal negative regulator Nra on bacterial interactions with epithelial cells. Mol Microbiol40:99–114 [CrossRef][PubMed]
    [Google Scholar]
  43. Nakagawa I., Kurokawa K., Yamashita A., Nakata M., Tomiyasu Y., Okahashi N., Kawabata S., Yamazaki K., Shiba T. et al. ( 2003;). Genome sequence of an M3 strain of Streptococcus pyogenes reveals a large-scale genomic rearrangement in invasive strains and new insights into phage evolution. Genome Res13:6A1042–1055 [CrossRef][PubMed]
    [Google Scholar]
  44. Nakamura T., Hasegawa T., Torii K., Hasegawa Y., Shimokata K., Ohta M.. ( 2004;). Two-dimensional gel electrophoresis analysis of the abundance of virulent exoproteins of group A streptococcus caused by environmental changes. Arch Microbiol181:74–81 [CrossRef][PubMed]
    [Google Scholar]
  45. Okada N., Tatsuno I., Hanski E., Caparon M., Sasakawa C.. ( 1998;). Streptococcus pyogenes protein F promotes invasion of HeLa cells. Microbiology144:3079–3086 [CrossRef][PubMed]
    [Google Scholar]
  46. Podbielski A., Woischnik M., Leonard B. A., Schmidt K. H.. ( 1999;). Characterization of nra, a global negative regulator gene in group A streptococci. Mol Microbiol31:1051–1064 [CrossRef][PubMed]
    [Google Scholar]
  47. Reichardt W., Müller-Alouf H., Alouf J. E., Köhler W.. ( 1992;). Erythrogenic toxins A, B and C: occurrence of the genes and exotoxin formation from clinical Streptococcus pyogenes strains associated with streptococcal toxic shock-like syndrome. FEMS Microbiol Lett79:313–322[PubMed][CrossRef]
    [Google Scholar]
  48. Santi I., Grifantini R., Jiang S. M., Brettoni C., Grandi G., Wessels M. R., Soriani M.. ( 2009;). CsrRS regulates group B Streptococcus virulence gene expression in response to environmental pH: a new perspective on vaccine development. J Bacteriol191:5387–5397 [CrossRef][PubMed]
    [Google Scholar]
  49. Sawai J., Hasegawa T., Kamimura T., Okamoto A., Ohmori D., Nosaka N., Yamada K., Torii K., Ohta M.. ( 2007;). Growth phase-dependent effect of clindamycin on production of exoproteins by Streptococcus pyogenes . Antimicrob Agents Chemother51:461–467 [CrossRef][PubMed]
    [Google Scholar]
  50. Senadheera D., Krastel K., Mair R., Persadmehr A., Abranches J., Burne R. A., Cvitkovitch D. G.. ( 2009;). Inactivation of VicK affects acid production and acid survival of Streptococcus mutans . J Bacteriol191:6415–6424 [CrossRef][PubMed]
    [Google Scholar]
  51. Sitkiewicz I., Green N. M., Guo N., Bongiovanni A. M., Witkin S. S., Musser J. M.. ( 2010;). Adaptation of group A Streptococcus to human amniotic fluid. PLoS ONE5:e9785 [CrossRef][PubMed]
    [Google Scholar]
  52. Smoot J. C., Barbian K. D., Van Gompel J. J., Smoot L. M., Chaussee M. S., Sylva G. L., Sturdevant D. E., Ricklefs S. M., Porcella S. F. et al. ( 2002;). Genome sequence and comparative microarray analysis of serotype M18 group A Streptococcus strains associated with acute rheumatic fever outbreaks. Proc Natl Acad Sci U S A99:4668–4673 [CrossRef][PubMed]
    [Google Scholar]
  53. Sumby P., Porcella S. F., Madrigal A. G., Barbian K. D., Virtaneva K., Ricklefs S. M., Sturdevant D. E., Graham M. R., Vuopio-Varkila J. et al. ( 2005;). Evolutionary origin and emergence of a highly successful clone of serotype M1 group A Streptococcus involved multiple horizontal gene transfer events. J Infect Dis192:771–782 [CrossRef][PubMed]
    [Google Scholar]
  54. Tanaka M., Hasegawa T., Okamoto A., Torii K., Ohta M.. ( 2005;). Effect of antibiotics on group A streptococcus exoprotein production analyzed by two-dimensional gel electrophoresis. Antimicrob Agents Chemother49:88–96 [CrossRef][PubMed]
    [Google Scholar]
  55. Tatsuno I., Isaka M., Minami M., Hasegawa T.. ( 2010;). NADase as a target molecule of in vivo suppression of the toxicity in the invasive M-1 group A streptococcal isolates. BMC Microbiol10:144 [CrossRef][PubMed]
    [Google Scholar]
  56. Treviño J., Perez N., Ramirez-Peña E., Liu Z., Shelburne S. A. III, Musser J. M., Sumby P.. ( 2009;). CovS simultaneously activates and inhibits the CovR-mediated repression of distinct subsets of group A Streptococcus virulence factor-encoding genes. Infect Immun77:3141–3149 [CrossRef][PubMed]
    [Google Scholar]
  57. Vandal O. H., Nathan C. F., Ehrt S.. ( 2009;). Acid resistance in Mycobacterium tuberculosis . J Bacteriol191:4714–4721 [CrossRef][PubMed]
    [Google Scholar]
  58. von Delwig A., Bailey E., Gibbs D. M., Robinson J. H.. ( 2002;). The route of bacterial uptake by macrophages influences the repertoire of epitopes presented to CD4 T cells. Eur J Immunol32:3714–3719 [CrossRef][PubMed]
    [Google Scholar]
  59. Zhang J., Biswas I.. ( 2009;). A phenotypic microarray analysis of a Streptococcus mutans liaS mutant. Microbiology155:61–68 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.050534-0
Loading
/content/journal/micro/10.1099/mic.0.050534-0
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error