1887

Abstract

Ribonucleoside diphosphate reductase (RNR) is located in discrete foci in a number that increases with the overlapping of replication cycles in . Comparison of the numbers of RNR, DnaX and SeqA protein foci with the number of replication forks at different growth rates reveals that fork : focus ratios augment with increasing growth rates, suggesting a higher cohesion of the three protein foci with increasing number of forks per cell. Quantification of NrdB and SeqA proteins per cell showed: (i) a higher amount of RNR per focus at faster growth rates, which sustains the higher cohesion of RNR foci with higher numbers of forks per cell; and (ii) an equivalent amount of RNR per replication fork, independent of the number of the latter.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.049478-0
2011-08-01
2019-11-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/8/2220.html?itemId=/content/journal/micro/10.1099/mic.0.049478-0&mimeType=html&fmt=ahah

References

  1. Adachi S., Fukushima T., Hiraga S.. ( 2008; ). Dynamic events of sister chromosomes in the cell cycle of Escherichia coli . . Genes Cells 13:, 181–197. [CrossRef].[PubMed]
    [Google Scholar]
  2. Bates D., Kleckner N.. ( 2005; ). Chromosome and replisome dynamics in E. coli: loss of sister cohesion triggers global chromosome movement and mediates chromosome segregation. . Cell 121:, 899–911. [CrossRef].[PubMed]
    [Google Scholar]
  3. Brendler T., Sawitzke J., Sergueev K., Austin S.. ( 2000; ). A case for sliding SeqA tracts at anchored replication forks during Escherichia coli chromosome replication and segregation. . EMBO J 19:, 6249–6258. [CrossRef].[PubMed]
    [Google Scholar]
  4. Cooper S., Helmstetter C. E.. ( 1968; ). Chromosome replication and the division cycle of Escherichia coli B/r. . J Mol Biol 31:, 519–540. [CrossRef].[PubMed]
    [Google Scholar]
  5. den Blaauwen T., Aarsman M. E. G., Wheeler L. J., Nanninga N.. ( 2006; ). Pre-replication assembly of E. coli replisome components. . Mol Microbiol 62:, 695–708. [CrossRef].[PubMed]
    [Google Scholar]
  6. Dingman C. W., Fisher M. P., Ishizawa M.. ( 1974; ). DNA replication in Escherichia coli: physical and kinetic studies of the replication point. . J Mol Biol 84:, 275–295. [CrossRef].[PubMed]
    [Google Scholar]
  7. Fossum S., Crooke E., Skarstad K.. ( 2007; ). Organization of sister origins and replisomes during multifork DNA replication in Escherichia coli . . EMBO J 26:, 4514–4522. [CrossRef].[PubMed]
    [Google Scholar]
  8. Guzmán E. C., Caballero J. L., Jiménez-Sánchez A.. ( 2002; ). Ribonucleoside diphosphate reductase is a component of the replication hyperstructure in Escherichia coli . . Mol Microbiol 43:, 487–495. [CrossRef].[PubMed]
    [Google Scholar]
  9. Hiraga S., Ichinose C., Niki H., Yamazoe M.. ( 1998; ). Cell cycle-dependent duplication and bidirectional migration of SeqA-associated DNA–protein complexes in E. coli . . Mol Cell 1:, 381–387. [CrossRef].[PubMed]
    [Google Scholar]
  10. Jiménez-Sánchez A., Guzmán E. C.. ( 1988; ). Direct procedure for the determination of the number of replication forks and the reinitiation fraction in bacteria. . Comput Appl Biosci 4:, 431–433.[PubMed]
    [Google Scholar]
  11. Mathews C. K., Wheeler L. J., Ungermann C., Young J. P., Ray N. B.. ( 1993; ). Enzyme interactions involving T4 phage-coded thymidylate synthase and deoxycytidylate hydroxymethylase. . Adv Exp Med Biol 338:, 563–570.[PubMed]
    [Google Scholar]
  12. Molina F., Skarstad K.. ( 2004; ). Replication fork and SeqA focus distributions in Escherichia coli suggest a replication hyperstructure dependent on nucleotide metabolism. . Mol Microbiol 52:, 1597–1612. [CrossRef].[PubMed]
    [Google Scholar]
  13. Molina F., Sánchez-Romero M. A., Jiménez-Sánchez A.. ( 2008; ). Dynamic organization of replication forks into factories in Escherichia coli . . Process Biochem 43:, 11711177. [CrossRef]
    [Google Scholar]
  14. Morigen O., Odsbu I., Skarstad K.. ( 2009; ). Growth rate dependent numbers of SeqA structures organize the multiple replication forks in rapidly growing Escherichia coli . . Genes Cells 14:, 643–657. [CrossRef].[PubMed]
    [Google Scholar]
  15. Norris V., den Blaauwen T., Doi R. H., Harshey R. M., Janniere L., Jiménez-Sánchez A., Jin D. J., Levin P. A., Mileykovskaya E. et al. ( 2007; ). Toward a hyperstructure taxonomy. . Annu Rev Microbiol 61:, 309–329. [CrossRef].[PubMed]
    [Google Scholar]
  16. Ohsumi K., Yamazoe M., Hiraga S.. ( 2001; ). Different localization of SeqA-bound nascent DNA clusters and MukF–MukE–MukB complex in Escherichia coli cells. . Mol Microbiol 40:, 835–845. [CrossRef].[PubMed]
    [Google Scholar]
  17. Reyes-Lamothe R., Sherratt D. J., Leake M. C.. ( 2010; ). Stoichiometry and architecture of active DNA replication machinery in Escherichia coli . . Science 328:, 498–501. [CrossRef].[PubMed]
    [Google Scholar]
  18. Sánchez-Romero M. A., Busby S. J., Dyer N. P., Ott S., Millard A. D., Grainger D. C.. ( 2010a; ). Dynamic distribution of SeqA protein across the chromosome of Escherichia coli K-12. . MBio 1:, e00012-10. [CrossRef].[PubMed]
    [Google Scholar]
  19. Sánchez-Romero M. A., Molina F., Jiménez-Sánchez A.. ( 2010b; ). Correlation between ribonucleoside-diphosphate reductase and three replication proteins in Escherichia coli . . BMC Mol Biol 11:, 11. [CrossRef].[PubMed]
    [Google Scholar]
  20. Sunako Y., Onogi T., Hiraga S.. ( 2001; ). Sister chromosome cohesion of Escherichia coli . . Mol Microbiol 42:, 1233–1241. [CrossRef].[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.049478-0
Loading
/content/journal/micro/10.1099/mic.0.049478-0
Loading

Data & Media loading...

Supplements

RNR foci in optically sectioned cells. Sixty-four images in the -axis were collected at intervals of 0.05 µm, i.e. until the feature of interest was completely captured. (a) A set of raw images before deconvolution and (b) the same sections after deconvolution [ PDF] (5 MB)

PDF

Movie showing a rotatable image in 3D after deconvolution. This 3D image was a three-dimensional reconstruction of the stack of deconvolved images, using ImageJ software [ .mov file] (197 KB)

MOVIE
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error