1887

Abstract

The transmigration of African trypanosomes across the human blood–brain barrier (BBB) is the critical step during the course of human African trypanosomiasis. The parasites and are transmitted to humans during the bite of tsetse flies. Trypanosomes multiply within the bloodstream and finally invade the central nervous system (CNS), which leads to the death of untreated patients. This project focused on the mechanisms of trypanosomal traversal across the BBB. In order to establish a suitable BBB model for parasite transmigration, different human cell lines were used, including ECV304, HBMEC and HUVEC, as well as C6 rat astrocytes. Validation of the BBB models with HB101 and K1 revealed that a combination of ECV304 cells seeded on Matrigel as a semi-synthetic basement membrane and C6 astrocytes resulted in an optimal BBB model system. The BBB model showed selective permeability for the pathogenic K1 strain, and African trypanosomes were able to traverse the optimized ECV304–C6 BBB efficiently. Furthermore, coincubation indicated that paracellular macrophage transmigration does not facilitate trypanosomal BBB traversal. An inverse assembly of the BBB model demonstrated that trypanosomes were also able to transmigrate the optimized ECV304–C6 BBB backwards, indicating the relevance of the CNS as a possible reservoir of a relapsing parasitaemia.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.049106-0
2011-10-01
2019-12-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/10/2933.html?itemId=/content/journal/micro/10.1099/mic.0.049106-0&mimeType=html&fmt=ahah

References

  1. Abbott N. J. . ( 2005; ). Dynamics of CNS barriers: evolution, differentiation, and modulation. . Cell Mol Neurobiol 25:, 5–23. [CrossRef] [PubMed]
    [Google Scholar]
  2. Abbott N. J. , Rönnbäck L. , Hansson E. . ( 2006; ). Astrocyte-endothelial interactions at the blood-brain barrier. . Nat Rev Neurosci 7:, 41–53. [CrossRef] [PubMed]
    [Google Scholar]
  3. Boyer H. W. , Roulland-Dussoix D. . ( 1969; ). A complementation analysis of the restriction and modification of DNA in Escherichia coli . . J Mol Biol 41:, 459–472. [CrossRef] [PubMed]
    [Google Scholar]
  4. Burns A. R. , Bowden R. A. , MacDonell S. D. , Walker D. C. , Odebunmi T. O. , Donnachie E. M. , Simon S. I. , Entman M. L. , Smith C. W. . ( 2000; ). Analysis of tight junctions during neutrophil transendothelial migration. . J Cell Sci 113:, 45–57.[PubMed]
    [Google Scholar]
  5. Cecchelli R. , Berezowski V. , Lundquist S. , Culot M. , Renftel M. , Dehouck M. P. , Fenart L. . ( 2007; ). Modelling of the blood-brain barrier in drug discovery and development. . Nat Rev Drug Discov 6:, 650–661. [CrossRef] [PubMed]
    [Google Scholar]
  6. Charlier C. , Nielsen K. , Daou S. , Brigitte M. , Chretien F. , Dromer F. . ( 2009; ). Evidence of a role for monocytes in dissemination and brain invasion by Cryptococcus neoformans . . Infect Immun 77:, 120–127. [CrossRef] [PubMed]
    [Google Scholar]
  7. Cucullo L. , Hossain M. , Rapp E. , Manders T. , Marchi N. , Janigro D. . ( 2007; ). Development of a humanized in vitro blood-brain barrier model to screen for brain penetration of antiepileptic drugs. . Epilepsia 48:, 505–516. [CrossRef] [PubMed]
    [Google Scholar]
  8. Dubois M. E. , Demick K. P. , Mansfield J. M. . ( 2005; ). Trypanosomes expressing a mosaic variant surface glycoprotein coat escape early detection by the immune system. . Infect Immun 73:, 2690–2697. [CrossRef] [PubMed]
    [Google Scholar]
  9. Giri R. , Shen Y. , Stins M. , Du Yan S. , Schmidt A. M. , Stern D. , Kim K. S. , Zlokovic B. , Kalra V. K. . ( 2000; ). β-Amyloid-induced migration of monocytes across human brain endothelial cells involves RAGE and PECAM-1. . Am J Physiol Cell Physiol 279:, C1772–C1781.[PubMed]
    [Google Scholar]
  10. Grab D. J. , Kennedy P. G. . ( 2008; ). Traversal of human and animal trypanosomes across the blood-brain barrier. . J Neurovirol 14:, 344–351. [CrossRef] [PubMed]
    [Google Scholar]
  11. Grab D. J. , Nikolskaia O. , Kim Y. V. , Lonsdale-Eccles J. D. , Ito S. , Hara T. , Fukuma T. , Nyarko E. , Kim K. J. et al. & other authors ( 2004; ). African trypanosome interactions with an in vitro model of the human blood-brain barrier. . J Parasitol 90:, 970–979. [CrossRef] [PubMed]
    [Google Scholar]
  12. Hajduk S. L. , Moore D. R. , Vasudevacharya J. , Siqueira H. , Torri A. F. , Tytler E. M. , Esko J. D. . ( 1989; ). Lysis of Trypanosoma brucei by a toxic subspecies of human high density lipoprotein. . J Biol Chem 264:, 5210–5217.[PubMed]
    [Google Scholar]
  13. Hirumi H. , Hirumi K. . ( 1989; ). Continuous cultivation of Trypanosoma brucei blood stream forms in a medium containing a low concentration of serum protein without feeder cell layers. . J Parasitol 75:, 985–989. [CrossRef] [PubMed]
    [Google Scholar]
  14. Hirumi H. , Hirumi K. , Doyle J. J. , Cross G. A. . ( 1980; ). In vitro cloning of animal-infective bloodstream forms of Trypanosoma brucei . . Parasitology 80:, 371–382. [CrossRef] [PubMed]
    [Google Scholar]
  15. Huang S. H. , Wass C. , Fu Q. , Prasadarao N. V. , Stins M. , Kim K. S. . ( 1995; ). Escherichia coli invasion of brain microvascular endothelial cells in vitro and in vivo: molecular cloning and characterization of invasion gene ibe10 . . Infect Immun 63:, 4470–4475.[PubMed]
    [Google Scholar]
  16. Huber J. D. , Egleton R. D. , Davis T. P. . ( 2001; ). Molecular physiology and pathophysiology of tight junctions in the blood-brain barrier. . Trends Neurosci 24:, 719–725. [CrossRef] [PubMed]
    [Google Scholar]
  17. Hurst R. D. , Fritz I. B. . ( 1996; ). Properties of an immortalised vascular endothelial/glioma cell co-culture model of the blood-brain barrier. . J Cell Physiol 167:, 81–88. [CrossRef] [PubMed]
    [Google Scholar]
  18. Hurst R. D. , Heales S. J. , Dobbie M. S. , Barker J. E. , Clark J. B. . ( 1998; ). Decreased endothelial cell glutathione and increased sensitivity to oxidative stress in an in vitro blood-brain barrier model system. . Brain Res 802:, 232–240. [CrossRef] [PubMed]
    [Google Scholar]
  19. Jennings F. W. , Whitelaw D. D. , Holmes P. H. , Chizyuka H. G. , Urquhart G. M. . ( 1979; ). The brain as a source of relapsing Trypanosoma brucei infection in mice after chemotherapy. . Int J Parasitol 9:, 381–384. [CrossRef] [PubMed]
    [Google Scholar]
  20. Kim K. S. . ( 2000; ). E. coli invasion of brain microvascular endothelial cells as a pathogenetic basis of meningitis. . Subcell Biochem 33:, 47–59.[PubMed]
    [Google Scholar]
  21. Korhonen T. K. , Valtonen M. V. , Parkkinen J. , Väisänen-Rhen V. , Finne J. , Orskov F. , Orskov I. , Svenson S. B. , Mäkelä P. H. . ( 1985; ). Serotypes, hemolysin production, and receptor recognition of Escherichia coli strains associated with neonatal sepsis and meningitis. . Infect Immun 48:, 486–491.[PubMed]
    [Google Scholar]
  22. Kuchler-Bopp S. , Delaunoy J. P. , Artault J. C. , Zaepfel M. , Dietrich J. B. . ( 1999; ). Astrocytes induce several blood-brain barrier properties in non-neural endothelial cells. . Neuroreport 10:, 1347–1353. [CrossRef] [PubMed]
    [Google Scholar]
  23. Kühne S. , Untucht C. , Steinert M. , Wätzig H. . ( 2011; ). Fast investigations from biological matrices using CE – test of a blood–brain barrier model. . Electrophoresis (in press).
    [Google Scholar]
  24. Marchesi V. T. . ( 1961; ). The site of leucocyte emigration during inflammation. . Q J Exp Physiol Cogn Med Sci 46:, 115–118.[PubMed]
    [Google Scholar]
  25. Masocha W. , Robertson B. , Rottenberg M. E. , Mhlanga J. , Sorokin L. , Kristensson K. . ( 2004; ). Cerebral vessel laminins and IFN-gamma define Trypanosoma brucei brucei penetration of the blood-brain barrier. . J Clin Invest 114:, 689–694.[PubMed] [CrossRef]
    [Google Scholar]
  26. Masocha W. , Rottenberg M. E. , Kristensson K. . ( 2007; ). Migration of African trypanosomes across the blood-brain barrier. . Physiol Behav 92:, 110–114. [CrossRef] [PubMed]
    [Google Scholar]
  27. Nakagawa S. , Deli M. A. , Nakao S. , Honda M. , Hayashi K. , Nakaoke R. , Kataoka Y. , Niwa M. . ( 2007; ). Pericytes from brain microvessels strengthen the barrier integrity in primary cultures of rat brain endothelial cells. . Cell Mol Neurobiol 27:, 687–694. [CrossRef] [PubMed]
    [Google Scholar]
  28. Nikolskaia O. V. , de A. Lima A. P. C. , Kim Y. V. , Lonsdale-Eccles J. D. , Fukuma T. , Scharfstein J. , Grab D. J. . ( 2006; ). Blood-brain barrier traversal by African trypanosomes requires calcium signaling induced by parasite cysteine protease. . J Clin Invest 116:, 2739–2747.[PubMed] [CrossRef]
    [Google Scholar]
  29. Nikolskaia O. V. , de A. Lima A. P. C. , Kim Y. V. , Lonsdale-Eccles J. D. , Fukuma T. , Scharfstein J. , Grab D. J. . ( 2008; ). Corrigendum. Blood-brain barrier traversal by African trypanosomes requires calcium signaling induced by parasite cysteine protease. . J Clin Invest 118:, 1974. [CrossRef]
    [Google Scholar]
  30. Nooteboom A. , Hendriks T. , Ottehöller I. , van der Linden C. J. . ( 2000; ). Permeability characteristics of human endothelial monolayers seeded on different extracellular matrix proteins. . Mediators Inflamm 9:, 235–241. [CrossRef] [PubMed]
    [Google Scholar]
  31. Parkinson F. E. , Friesen J. , Krizanac-Bengez L. , Janigro D. . ( 2003; ). Use of a three-dimensional in vitro model of the rat blood-brain barrier to assay nucleoside efflux from brain. . Brain Res 980:, 233–241. [CrossRef] [PubMed]
    [Google Scholar]
  32. Reichel A. , Begley D. J. , Abbott N. J. . ( 2003; ). An overview of in vitro techniques for blood-brain barrier studies. . Methods Mol Med 89:, 307–324.[PubMed]
    [Google Scholar]
  33. Rifkin M. R. . ( 1978; ). Identification of the trypanocidal factor in normal human serum: high density lipoprotein. . Proc Natl Acad Sci U S A 75:, 3450–3454. [CrossRef] [PubMed]
    [Google Scholar]
  34. Stanness K. A. , Westrum L. E. , Fornaciari E. , Mascagni P. , Nelson J. A. , Stenglein S. G. , Myers T. , Janigro D. . ( 1997; ). Morphological and functional characterization of an in vitro blood-brain barrier model. . Brain Res 771:, 329–342. [CrossRef] [PubMed]
    [Google Scholar]
  35. Steverding D. . ( 2008; ). The history of African trypanosomiasis. . Parasit Vectors 1:, 3. [CrossRef] [PubMed]
    [Google Scholar]
  36. Stins M. F. , Gilles F. , Kim K. S. . ( 1997; ). Selective expression of adhesion molecules on human brain microvascular endothelial cells. . J Neuroimmunol 76:, 81–90. [CrossRef] [PubMed]
    [Google Scholar]
  37. Stins M. F. , Nemani P. V. , Wass C. , Kim K. S. . ( 1999; ). Escherichia coli binding to and invasion of brain microvascular endothelial cells derived from humans and rats of different ages. . Infect Immun 67:, 5522–5525.[PubMed]
    [Google Scholar]
  38. Vanhollebeke B. , Truc P. , Poelvoorde P. , Pays A. , Joshi P. P. , Katti R. , Jannin J. G. , Pays E. . ( 2006; ). Human Trypanosoma evansi infection linked to a lack of apolipoprotein L-I. . N Engl J Med 355:, 2752–2756. [CrossRef] [PubMed]
    [Google Scholar]
  39. WHO ( 2010; ). Fact sheet no. 259 – African trypanosomiasis.
  40. Wittchen E. S. . ( 2009; ). Endothelial signaling in paracellular and transcellular leukocyte transmigration. . Front Biosci 14:, 2522–2545. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.049106-0
Loading
/content/journal/micro/10.1099/mic.0.049106-0
Loading

Data & Media loading...

Supplements

vol. , part 10, pp. 2933 - 2941

( PDF, 147 kb), containing: Composition of media Inoculum-dependent transmigration of pathogenic K1 and avirulent HB101 across the optimized ECV304-C6 BBB Transmigration of TC221, STIB930 and STIB900 across the optimized ECV304-C6 BBB



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error