1887

Abstract

The γ-butyrolactone autoregulator receptor has been shown to control secondary metabolism and/or morphological differentiation across many species. produces an important anthelmintic agent (avermectin) and two further polyketide antibiotics, filipin and oligomycin. Genomic analysis of revealed that this micro-organism has the clustered putative autoregulator receptor genes distant from the antibiotic biosynthetic gene clusters. Here, we describe the characterization of , one of the clustered receptor genes, which encodes a protein containing an extra stretch of amino acid residues that has not been found in the family of autoregulator receptors. Disruption of resulted in markedly decreased production of avermectins, with delayed expression of avermectin biosynthetic genes, suggesting that AvaR3 positively controls the avermectin biosynthetic genes. Moreover, the disruption caused increased production of filipin without any changes in the transcriptional profile of the filipin biosynthetic genes, suggesting that filipin production is indirectly controlled by AvaR3. The disruptant displayed fragmented growth in liquid culture and conditional morphological defects on solid medium. These findings demonstrated that AvaR3 acts as a global regulator that controls antibiotic production and cell morphology.

Funding
This study was supported by the:
  • Noda Institute for Scientific Research
  • Joint Program in the Field of Biotechnology
  • Japan Society for the Promotion of Science
  • National Research Council of Thailand
  • National Science and Technology Development Agency of Thailand (Award 21360404)
  • Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan (Award 20310122)
  • MEXT
  • Institute for Fermentation, Osaka, Japan
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.048371-0
2011-08-01
2024-12-06
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/8/2266.html?itemId=/content/journal/micro/10.1099/mic.0.048371-0&mimeType=html&fmt=ahah

References

  1. Bibb M. J. ( 2005). Regulation of secondary metabolism in streptomycetes. Curr Opin Microbiol 8:208–215 [View Article][PubMed]
    [Google Scholar]
  2. Bierman M., Logan R., O’Brien K., Seno E. T., Rao R. N., Schoner B. E. ( 1992). Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp. Gene 116:43–49 [View Article][PubMed]
    [Google Scholar]
  3. Bunet R., Mendes M. V., Rouhier N., Pang X., Hotel L., Leblond P., Aigle B. ( 2008). Regulation of the synthesis of the angucyclinone antibiotic alpomycin in Streptomyces ambofaciens by the autoregulator receptor AlpZ and its specific ligand. J Bacteriol 190:3293–3305 [View Article][PubMed]
    [Google Scholar]
  4. Bunet R., Song L., Mendes M. V., Corre C., Hotel L., Rouhier N., Framboisier X., Leblond P., Challis G. L., Aigle B. ( 2011). Characterization and manipulation of the pathway-specific late regulator AlpW reveals Streptomyces ambofaciens as a new producer of kinamycins. J Bacteriol 193:1142–1153 [View Article][PubMed]
    [Google Scholar]
  5. Burg R. W., Miller B. M., Baker E. E., Birnbaum J., Currie S. A., Hartman R., Kong Y. L., Monaghan R. L., Olson G. et al. ( 1979). Avermectins, new family of potent anthelmintic agents: producing organism and fermentation. Antimicrob Agents Chemother 15:361–367[PubMed] [CrossRef]
    [Google Scholar]
  6. Cundliffe E. ( 2008). Control of tylosin biosynthesis in Streptomyces fradiae . J Microbiol Biotechnol 18:1485–1491[PubMed]
    [Google Scholar]
  7. de Jong W., Wösten H. A., Dijkhuizen L., Claessen D. ( 2009). Attachment of Streptomyces coelicolor is mediated by amyloidal fimbriae that are anchored to the cell surface via cellulose. Mol Microbiol 73:1128–1140 [View Article][PubMed]
    [Google Scholar]
  8. Folcher M., Gaillard H., Nguyen L. T., Nguyen K. T., Lacroix P., Bamas-Jacques N., Rinkel M., Thompson C. J. ( 2001). Pleiotropic functions of a Streptomyces pristinaespiralis autoregulator receptor in development, antibiotic biosynthesis, and expression of a superoxide dismutase. J Biol Chem 276:44297–44306 [View Article][PubMed]
    [Google Scholar]
  9. Gottelt M., Kol S., Gomez-Escribano J. P., Bibb M., Takano E. ( 2010). Deletion of a regulatory gene within the cpk gene cluster reveals novel antibacterial activity in Streptomyces coelicolor A3(2). Microbiology 156:2343–2353 [View Article][PubMed]
    [Google Scholar]
  10. Healy F. G., Eaton K. P., Limsirichai P., Aldrich J. F., Plowman A. K., King R. R. ( 2009). Characterization of γ-butyrolactone autoregulatory signaling gene homologs in the angucyclinone polyketide WS5995B producer Streptomyces acidiscabies . J Bacteriol 191:4786–4797 [View Article][PubMed]
    [Google Scholar]
  11. Horinouchi S. ( 2007). Mining and polishing of the treasure trove in the bacterial genus Streptomyces . Biosci Biotechnol Biochem 71:283–299 [View Article][PubMed]
    [Google Scholar]
  12. Ikeda H., Kotaki H., Omura S. ( 1987). Genetic studies of avermectin biosynthesis in Streptomyces avermitilis . J Bacteriol 169:5615–5621[PubMed]
    [Google Scholar]
  13. Ikeda H., Nonomiya T., Usami M., Ohta T., Omura S. ( 1999). Organization of the biosynthetic gene cluster for the polyketide anthelmintic macrolide avermectin in Streptomyces avermitilis . Proc Natl Acad Sci U S A 96:9509–9514 [View Article][PubMed]
    [Google Scholar]
  14. Ishikawa J., Hotta K. ( 1999). FramePlot: a new implementation of the frame analysis for predicting protein-coding regions in bacterial DNA with a high G + C content. FEMS Microbiol Lett 174:251–253 [View Article][PubMed]
    [Google Scholar]
  15. Kang J. G., Hahn M. Y., Ishihama A., Roe J. H. ( 1997). Identification of sigma factors for growth phase-related promoter selectivity of RNA polymerases from Streptomyces coelicolor A3(2). Nucleic Acids Res 25:2566–2573 [View Article][PubMed]
    [Google Scholar]
  16. Kawamoto S., Watanabe H., Hesketh A., Ensign J. C., Ochi K. ( 1997). Expression analysis of the ssgA gene product, associated with sporulation and cell division in Streptomyces griseus . Microbiology 143:1077–1086 [View Article][PubMed]
    [Google Scholar]
  17. Kieser T., Bibb M. J., Buttner M. J., Chater K. F., Hopwood D. A. ( 2000). Practical Streptomyces Genetics Norwich: John Innes Foundation;
    [Google Scholar]
  18. Kinoshita H., Ipposhi H., Okamoto S., Nakano H., Nihira T., Yamada Y. ( 1997). Butyrolactone autoregulator receptor protein (BarA) as a transcriptional regulator in Streptomyces virginiae . J Bacteriol 179:6986–6993[PubMed]
    [Google Scholar]
  19. Kitani S., Ikeda H., Sakamoto T., Noguchi S., Nihira T. ( 2009). Characterization of a regulatory gene, aveR, for the biosynthesis of avermectin in Streptomyces avermitilis . Appl Microbiol Biotechnol 82:1089–1096 [View Article][PubMed]
    [Google Scholar]
  20. Komatsu M., Uchiyama T., Omura S., Cane D. E., Ikeda H. ( 2010). Genome-minimized Streptomyces host for the heterologous expression of secondary metabolism. Proc Natl Acad Sci U S A 107:2646–2651 [View Article][PubMed]
    [Google Scholar]
  21. Lamb D. C., Ikeda H., Nelson D. R., Ishikawa J., Skaug T., Jackson C., Omura S., Waterman M. R., Kelly S. L. ( 2003). Cytochrome p450 complement (CYPome) of the avermectin-producer Streptomyces avermitilis and comparison to that of Streptomyces coelicolor A3(2). Biochem Biophys Res Commun 307:610–619 [View Article][PubMed]
    [Google Scholar]
  22. López-García M. T., Santamarta I., Liras P. ( 2010). Morphological differentiation and clavulanic acid formation are affected in a Streptomyces clavuligerus adpA-deleted mutant. Microbiology 156:2354–2365 [View Article][PubMed]
    [Google Scholar]
  23. Matsuno K., Yamada Y., Lee C. K., Nihira T. ( 2004). Identification by gene deletion analysis of barB as a negative regulator controlling an early process of virginiamycin biosynthesis in Streptomyces virginiae . Arch Microbiol 181:52–59 [View Article][PubMed]
    [Google Scholar]
  24. Nakano H., Lee C. K., Nihira T., Yamada Y. ( 2000). A null mutant of the Streptomyces virginiae barA gene encoding a butyrolactone autoregulator receptor and its phenotypic and transcriptional analysis. J Biosci Bioeng 90:204–207[PubMed] [CrossRef]
    [Google Scholar]
  25. Natsume R., Ohnishi Y., Senda T., Horinouchi S. ( 2004). Crystal structure of a γ-butyrolactone autoregulator receptor protein in Streptomyces coelicolor A3(2). J Mol Biol 336:409–419 [View Article][PubMed]
    [Google Scholar]
  26. Omura S., Ikeda H., Ishikawa J., Hanamoto A., Takahashi C., Shinose M., Takahashi Y., Horikawa H., Nakazawa H. et al. ( 2001). Genome sequence of an industrial microorganism Streptomyces avermitilis: deducing the ability of producing secondary metabolites. Proc Natl Acad Sci U S A 98:12215–12220 [View Article][PubMed]
    [Google Scholar]
  27. Pan Y., Liu G., Yang H., Tian Y., Tan H. ( 2009). The pleiotropic regulator AdpA-L directly controls the pathway-specific activator of nikkomycin biosynthesis in Streptomyces ansochromogenes . Mol Microbiol 72:710–723 [View Article][PubMed]
    [Google Scholar]
  28. Pulsawat N., Kitani S., Nihira T. ( 2007). Characterization of biosynthetic gene cluster for the production of virginiamycin M, a streptogramin type A antibiotic, in Streptomyces virginiae . Gene 393:31–42 [View Article][PubMed]
    [Google Scholar]
  29. Pulsawat N., Kitani S., Fukushima E., Nihira T. ( 2009). Hierarchical control of virginiamycin production in Streptomyces virginiae by three pathway-specific regulators: VmsS, VmsT and VmsR. Microbiology 155:1250–1259 [View Article][PubMed]
    [Google Scholar]
  30. Strohl W. R. ( 1992). Compilation and analysis of DNA sequences associated with apparent streptomycete promoters. Nucleic Acids Res 20:961–974 [View Article][PubMed]
    [Google Scholar]
  31. Takano E. ( 2006). γ-Butyrolactones: Streptomyces signalling molecules regulating antibiotic production and differentiation. Curr Opin Microbiol 9:287–294 [View Article][PubMed]
    [Google Scholar]
  32. Takano E., Kinoshita H., Mersinias V., Bucca G., Hotchkiss G., Nihira T., Smith C. P., Bibb M., Wohlleben W., Chater K. ( 2005). A bacterial hormone (the SCB1) directly controls the expression of a pathway-specific regulatory gene in the cryptic type I polyketide biosynthetic gene cluster of Streptomyces coelicolor . Mol Microbiol 56:465–479 [View Article][PubMed]
    [Google Scholar]
  33. Traag B. A., van Wezel G. P. ( 2008). The SsgA-like proteins in actinomycetes: small proteins up to a big task. Antonie van Leeuwenhoek 94:85–97 [View Article][PubMed]
    [Google Scholar]
  34. van Wezel G. P., van der Meulen J., Kawamoto S., Luiten R. G., Koerten H. K., Kraal B. ( 2000). ssgA is essential for sporulation of Streptomyces coelicolor A3(2) and affects hyphal development by stimulating septum formation. J Bacteriol 182:5653–5662 [View Article][PubMed]
    [Google Scholar]
  35. Wei X., Yunxiang L., Yinghua Z. ( 2006). Enhancement and selective production of oligomycin through inactivation of avermectin’s starter unit in Streptomyces avermitilis . Biotechnol Lett 28:911–916 [View Article][PubMed]
    [Google Scholar]
  36. Xu H., Chater K. F., Deng Z., Tao M. ( 2008). A cellulose synthase-like protein involved in hyphal tip growth and morphological differentiation in streptomyces. J Bacteriol 190:4971–4978 [View Article][PubMed]
    [Google Scholar]
/content/journal/micro/10.1099/mic.0.048371-0
Loading
/content/journal/micro/10.1099/mic.0.048371-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF

Supplementary material 3

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error