1887

Abstract

A common bacterial strategy to cope with stressful conditions is the activation of alternative sigma factors that control specific regulons enabling targeted responses. In the human pathogen , activation of the major stress-responsive sigma factor is controlled by a signalling route that involves the multi-sensor hybrid histidine kinase RsbK. RsbK-type kinases are not restricted to the group, but occur in a wide variety of other bacterial species, including members of the the low-GC Gram-positive genera and as well as the high-GC actinobacteria. Genome context and protein sequence analyses of 118 RsbK homologues revealed extreme variability in N-terminal sensory as well as C-terminal regulatory domains and suggested that RsbK-type kinases are subject to complex fine-tuning systems, including sensitization and desensitization via methylation and demethylation within the helical domain preceding the H-box. The RsbK-mediated stress-responsive sigma factor activation mechanism that has evolved in and the other species differs markedly from the extensively studied and highly conserved RsbRST-mediated activation route found in and other low-GC Gram-positive bacteria. Implications for future research on sigma factor control mechanisms are presented and current knowledge gaps are briefly discussed.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.045740-0
2011-01-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/1/3.html?itemId=/content/journal/micro/10.1099/mic.0.045740-0&mimeType=html&fmt=ahah

References

  1. Akbar, S., Gaidenko, T. A., Kang, C. M., O'Reilly, M., Devine, K. M. & Price, C. W. ( 2001; ). New family of regulators in the environmental signaling pathway which activates the general stress transcription factor σ B of Bacillus subtilis. J Bacteriol 183, 1329–1338.[CrossRef]
    [Google Scholar]
  2. Alm, E., Huang, K. & Arkin, A. ( 2006; ). The evolution of two-component systems in bacteria reveals different strategies for niche adaptation. PLOS Comput Biol 2, e143.[CrossRef]
    [Google Scholar]
  3. Anantharaman, V., Balaji, S. & Aravind, L. ( 2006; ). The signaling helix: a common functional theme in diverse signaling proteins. Biol Direct 1, 25.[CrossRef]
    [Google Scholar]
  4. Ávila-Pérez, M., Hellingwerf, K. J. & Kort, R. ( 2006; ). Blue light activates the σ B-dependent stress response of Bacillus subtilis via YtvA. J Bacteriol 188, 6411–6414.[CrossRef]
    [Google Scholar]
  5. Ávila-Pérez, M., van der Steen, J. B., Kort, R. & Hellingwerf, K. J. ( 2010; ). Red light activates the σ B-mediated general stress response of Bacillus subtilis via the energy branch of the upstream signaling cascade. J Bacteriol 192, 755–762.[CrossRef]
    [Google Scholar]
  6. Bishop, A., Fielding, S., Dyson, P. & Herron, P. ( 2004; ). Systematic insertional mutagenesis of a streptomycete genome: a link between osmoadaptation and antibiotic production. Genome Res 14, 893–900.[CrossRef]
    [Google Scholar]
  7. Brody, M. S., Vijay, K. & Price, C. W. ( 2001; ). Catalytic function of an α/β hydrolase is required for energy stress activation of the σ B transcription factor in Bacillus subtilis. J Bacteriol 183, 6422–6428.[CrossRef]
    [Google Scholar]
  8. Brody, M. S., Stewart, V. & Price, C. W. ( 2009; ). Bypass suppression analysis maps the signalling pathway within a multidomain protein: the RsbP energy stress phosphatase 2C from Bacillus subtilis. Mol Microbiol 72, 1221–1234.[CrossRef]
    [Google Scholar]
  9. Chaturongakul, S., Raengpradub, S., Wiedmann, M. & Boor, K. J. ( 2008; ). Modulation of stress and virulence in Listeria monocytogenes. Trends Microbiol 16, 388–396.[CrossRef]
    [Google Scholar]
  10. Chen, C. C., Lewis, R. J., Harris, R., Yudkin, M. D. & Delumeau, O. ( 2003; ). A supramolecular complex in the environmental stress signalling pathway of Bacillus subtilis. Mol Microbiol 49, 1657–1669.[CrossRef]
    [Google Scholar]
  11. Chen, C. C., Yudkin, M. D. & Delumeau, O. ( 2004; ). Phosphorylation and RsbX-dependent dephosphorylation of RsbR in the RsbR-RsbS complex of Bacillus subtilis. J Bacteriol 186, 6830–6836.[CrossRef]
    [Google Scholar]
  12. Cho, Y. H., Lee, E. J., Ahn, B. E. & Roe, J. H. ( 2001; ). SigB, an RNA polymerase sigma factor required for osmoprotection and proper differentiation of Streptomyces coelicolor. Mol Microbiol 42, 205–214.
    [Google Scholar]
  13. Crooks, G. E., Hon, G., Chandonia, J. M. & Brenner, S. E. ( 2004; ). WebLogo: a sequence logo generator. Genome Res 14, 1188–1190.[CrossRef]
    [Google Scholar]
  14. Dandekar, T., Snel, B., Huynen, M. & Bork, P. ( 1998; ). Conservation of gene order: a fingerprint of proteins that physically interact. Trends Biochem Sci 23, 324–328.[CrossRef]
    [Google Scholar]
  15. de Been, M., Francke, C., Moezelaar, R., Abee, T. & Siezen, R. J. ( 2006; ). Comparative analysis of two-component signal transduction systems of Bacillus cereus, Bacillus thuringiensis and Bacillus anthracis. Microbiology 152, 3035–3048.[CrossRef]
    [Google Scholar]
  16. de Been, M., Tempelaars, M. H., van Schaik, W., Moezelaar, R., Siezen, R. J. & Abee, T. ( 2010; ). A novel hybrid kinase is essential for regulating the σ B-mediated stress response of Bacillus cereus. Environ Microbiol 12, 730–745.[CrossRef]
    [Google Scholar]
  17. Delumeau, O., Dutta, S., Brigulla, M., Kuhnke, G., Hardwick, S. W., Voelker, U., Yudkin, M. D. & Lewis, R. J. ( 2004; ). Functional and structural characterization of RsbU, a stress signaling protein phosphatase 2C. J Biol Chem 279, 40927–40937.[CrossRef]
    [Google Scholar]
  18. Delumeau, O., Chen, C. C., Murray, J. W., Yudkin, M. D. & Lewis, R. J. ( 2006; ). High-molecular-weight complexes of RsbR and paralogues in the environmental signaling pathway of Bacillus subtilis. J Bacteriol 188, 7885–7892.[CrossRef]
    [Google Scholar]
  19. Dufour, A., Voelker, U., Voelker, A. & Haldenwang, W. G. ( 1996; ). Relative levels and fractionation properties of Bacillus subtilis σ B and its regulators during balanced growth and stress. J Bacteriol 178, 3701–3709.
    [Google Scholar]
  20. Fabret, C., Feher, V. A. & Hoch, J. A. ( 1999; ). Two-component signal transduction in Bacillus subtilis: how one organism sees its world. J Bacteriol 181, 1975–1983.
    [Google Scholar]
  21. Fernández Martínez, L. F., Bishop, A., Parkes, L., Del Sol, R., Salerno, P., Sevcikova, B., Mazurakova, V., Kormanec, J. & Dyson, P. ( 2009; ). Osmoregulation in Streptomyces coelicolor: modulation of SigB activity by OsaC. Mol Microbiol 71, 1250–1262.[CrossRef]
    [Google Scholar]
  22. Fouet, A., Namy, O. & Lambert, G. ( 2000; ). Characterization of the operon encoding the alternative σ B factor from Bacillus anthracis and its role in virulence. J Bacteriol 182, 5036–5045.[CrossRef]
    [Google Scholar]
  23. Gaidenko, T. A., Kim, T. J., Weigel, A. L., Brody, M. S. & Price, C. W. ( 2006; ). The blue-light receptor YtvA acts in the environmental stress signaling pathway of Bacillus subtilis. J Bacteriol 188, 6387–6395.[CrossRef]
    [Google Scholar]
  24. Galperin, M. Y. ( 2004; ). Bacterial signal transduction network in a genomic perspective. Environ Microbiol 6, 552–567.[CrossRef]
    [Google Scholar]
  25. Grebe, T. W. & Stock, J. B. ( 1999; ). The histidine protein kinase superfamily. Adv Microb Physiol 41, 139–227.
    [Google Scholar]
  26. Gruber, T. M. & Gross, C. A. ( 2003; ). Multiple sigma subunits and the partitioning of bacterial transcription space. Annu Rev Microbiol 57, 441–466.[CrossRef]
    [Google Scholar]
  27. Hazelbauer, G. L. & Lai, W. C. ( 2010; ). Bacterial chemoreceptors: providing enhanced features to two-component signaling. Curr Opin Microbiol 13, 124–132.[CrossRef]
    [Google Scholar]
  28. Hecker, M., Pané-Farré, J. & Voelker, U. ( 2007; ). SigB-dependent general stress response in Bacillus subtilis and related gram-positive bacteria. Annu Rev Microbiol 61, 215–236.[CrossRef]
    [Google Scholar]
  29. Hoch, J. A. ( 2000; ). Two-component and phosphorelay signal transduction. Curr Opin Microbiol 3, 165–170.[CrossRef]
    [Google Scholar]
  30. Hulko, M., Berndt, F., Gruber, M., Linder, J. U., Truffault, V., Schultz, A., Martin, J., Schultz, J. E., Lupas, A. N. & Coles, M. ( 2006; ). The HAMP domain structure implies helix rotation in transmembrane signaling. Cell 126, 929–940.[CrossRef]
    [Google Scholar]
  31. Kim, T. J., Gaidenko, T. A. & Price, C. W. ( 2004; ). A multicomponent protein complex mediates environmental stress signaling in Bacillus subtilis. J Mol Biol 341, 135–150.[CrossRef]
    [Google Scholar]
  32. Lee, E. J., Cho, Y. H., Kim, H. S., Ahn, B. E. & Roe, J. H. ( 2004; ). Regulation of σ B by an anti- and an anti-anti-sigma factor in Streptomyces coelicolor in response to osmotic stress. J Bacteriol 186, 8490–8498.[CrossRef]
    [Google Scholar]
  33. Lee, E. J., Karoonuthaisiri, N., Kim, H. S., Park, J. H., Cha, C. J., Kao, C. M. & Roe, J. H. ( 2005; ). A master regulator σ B governs osmotic and oxidative response as well as differentiation via a network of sigma factors in Streptomyces coelicolor. Mol Microbiol 57, 1252–1264.[CrossRef]
    [Google Scholar]
  34. Le Moual, H. & Koshland, D. E., Jr ( 1996; ). Molecular evolution of the C-terminal cytoplasmic domain of a superfamily of bacterial receptors involved in taxis. J Mol Biol 261, 568–585.[CrossRef]
    [Google Scholar]
  35. Letunic, I., Doerks, T. & Bork, P. ( 2009; ). SMART 6: recent updates and new developments. Nucleic Acids Res 37, D229–D232.[CrossRef]
    [Google Scholar]
  36. Marles-Wright, J., Grant, T., Delumeau, O., van Duinen, G., Firbank, S. J., Lewis, P. J., Murray, J. W., Newman, J. A., Quin, M. B. & other authors ( 2008; ). Molecular architecture of the “stressosome,” a signal integration and transduction hub. Science 322, 92–96.[CrossRef]
    [Google Scholar]
  37. McLachlan, A. D. & Stewart, M. ( 1975; ). Tropomyosin coiled-coil interactions: evidence for an unstaggered structure. J Mol Biol 98, 293–304.[CrossRef]
    [Google Scholar]
  38. Mittenhuber, G. ( 2002; ). A phylogenomic study of the general stress response sigma factor σ B of Bacillus subtilis and its regulatory proteins. J Mol Microbiol Biotechnol 4, 427–452.
    [Google Scholar]
  39. Novick, R. P. ( 2003; ). Autoinduction and signal transduction in the regulation of staphylococcal virulence. Mol Microbiol 48, 1429–1449.[CrossRef]
    [Google Scholar]
  40. Overbeek, R., Fonstein, M., D'Souza, M., Pusch, G. D. & Maltsev, N. ( 1999; ). The use of gene clusters to infer functional coupling. Proc Natl Acad Sci U S A 96, 2896–2901.[CrossRef]
    [Google Scholar]
  41. Pané-Farré, J., Lewis, R. J. & Stülke, J. ( 2005; ). The RsbRST stress module in bacteria: a signalling system that may interact with different output modules. J Mol Microbiol Biotechnol 9, 65–76.[CrossRef]
    [Google Scholar]
  42. Perez, E., Zheng, H. & Stock, A. M. ( 2006; ). Identification of methylation sites in Thermotoga maritima chemotaxis receptors. J Bacteriol 188, 4093–4100.[CrossRef]
    [Google Scholar]
  43. Price, C. W. ( 2002; ). General stress response. In Bacillus Subtilis and its Closest Relatives: from Genes to Cells, pp. 369–384. Edited by Sonenshein, A. L., Hoch, J. A. & Losick, R.. Washington, DC. : American Society for Microbiology.
    [Google Scholar]
  44. Shi, X., Wegener-Feldbrügge, S., Huntley, S., Hamann, N., Hedderich, R. & Søgaard-Andersen, L. ( 2008; ). Bioinformatics and experimental analysis of proteins of two-component systems in Myxococcus xanthus. J Bacteriol 190, 613–624.[CrossRef]
    [Google Scholar]
  45. van Schaik, W. & Abee, T. ( 2005; ). The role of σ B in the stress response of Gram-positive bacteria – targets for food preservation and safety. Curr Opin Biotechnol 16, 218–224.[CrossRef]
    [Google Scholar]
  46. van Schaik, W., Tempelaars, M. H., Zwietering, M. H., de Vos, W. M. & Abee, T. ( 2005; ). Analysis of the role of RsbV, RsbW, and RsbY in regulating σ B activity in Bacillus cereus. J Bacteriol 187, 5846–5851.[CrossRef]
    [Google Scholar]
  47. Vijay, K., Brody, M. S., Fredlund, E. & Price, C. W. ( 2000; ). A PP2C phosphatase containing a PAS domain is required to convey signals of energy stress to the σ B transcription factor of Bacillus subtilis. Mol Microbiol 35, 180–188.[CrossRef]
    [Google Scholar]
  48. Viollier, P. H., Kelemen, G. H., Dale, G. E., Nguyen, K. T., Buttner, M. J. & Thompson, C. J. ( 2003; ). Specialized osmotic stress response systems involve multiple SigB-like sigma factors in Streptomyces coelicolor. Mol Microbiol 47, 699–714.[CrossRef]
    [Google Scholar]
  49. Voelker, U., Voelker, A., Maul, B., Hecker, M., Dufour, A. & Haldenwang, W. G. ( 1995; ). Separate mechanisms activate σ B of Bacillus subtilis in response to environmental and metabolic stresses. J Bacteriol 177, 3771–3780.
    [Google Scholar]
  50. Zimmer, M. A., Tiu, J., Collins, M. A. & Ordal, G. W. ( 2000; ). Selective methylation changes on the Bacillus subtilis chemotaxis receptor McpB promote adaptation. J Biol Chem 275, 24264–24272.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.045740-0
Loading
/content/journal/micro/10.1099/mic.0.045740-0
Loading

Data & Media loading...

Supplements

vol. , part 1, pp. 3 - 12

[ PDF, 11.8 MB]: Bootstrapped NJ tree of the BC1008 HK phosphotransferase domain and similar sequences Bootstrapped NJ tree of the BC1008 RR receiver (REC) domain and similar sequences Bootstrapped NJ tree of the RsbY RR receiver (REC) domain and similar sequences Bootstrapped NJ tree built from concatenated BC1008 HK phosphotransferase and RR receiver (REC) domains and similar sequences Potential methylation sites in RsbK homologues and their genomic association with CheR and CheB homologues Alignment of repeated heptads and potential methylation sites in RsbK homologues



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error