1887

Abstract

The anaerobic nitrite-reducing methanotroph ‘ Methylomirabilis oxyfera’ (‘ M. oxyfera’) produces oxygen from nitrite by a novel pathway. The major part of the O is used for methane activation and oxidation, which proceeds by the route well known for aerobic methanotrophs. Residual oxygen may serve other purposes, such as respiration. We have found that the genome of ‘ M. oxyfera’ harbours four sets of genes encoding terminal respiratory oxidases: two cytochrome oxidases, a third putative -type ubiquinol oxidase, and a cyanide-insensitive alternative oxidase. Illumina sequencing of reverse-transcribed total community RNA and quantitative real-time RT-PCR showed that all four sets of genes were transcribed, albeit at low levels. Oxygen-uptake and inhibition experiments, UV–visible absorption spectral characteristics and EPR spectroscopy of solubilized membranes showed that only one of the four oxidases is functionally produced by ‘ M. oxyfera’, notably the membrane-bound -type terminal oxidase. These findings open a new role for terminal respiratory oxidases in anaerobic systems, and are an additional indication of the flexibility of terminal oxidases, of which the distribution among anaerobic micro-organisms may be largely underestimated.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.045187-0
2011-03-01
2020-04-08
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/3/890.html?itemId=/content/journal/micro/10.1099/mic.0.045187-0&mimeType=html&fmt=ahah

References

  1. Abramson J., Svensson-Ek M., Byrne B., Iwata S.. 2001; Structure of cytochrome c oxidase: a comparison of the bacterial and mitochondrial enzymes. Biochim Biophys Acta 1544;1–9
    [Google Scholar]
  2. Baughn A. D., Malamy M. H.. 2004; The strict anaerobe Bacteroides fragilis grows in and benefits from nanomolar concentrations of oxygen. Nature427:441–444
    [Google Scholar]
  3. Berthold D. A., Siedow J. N.. 1993; Partial purification of the cyanide-resistant alternative oxidase of skunk cabbage ( Symplocarpus foetidus ) mitochondria. Plant Physiol101:113–119
    [Google Scholar]
  4. Berthold D. A., Stenmark P.. 2003; Membrane-bound diiron carboxylate proteins. Annu Rev Plant Biol54:497–517
    [Google Scholar]
  5. Berthold D. A., Voevodskaya N., Stenmark P., Graslund A., Nordlund P.. 2002; EPR studies of the mitochondrial alternative oxidase. J Biol Chem277:43608–43614
    [Google Scholar]
  6. Bradford M. M.. 1976; Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem72:248–254
    [Google Scholar]
  7. Das A., Silaghi-Dumitrescu R., Ljungdahl L. G., Kurtz D. M.. 2005; Cytochrome bd oxidase, oxidative stress, and dioxygen tolerance of the strictly anaerobic bacterium Moorella thermoacetica . J Bacteriol187:2020–2029
    [Google Scholar]
  8. Ettwig K. F., Shima S., van de Pas-Schoonen K. T., Kahnt J., Medema M. H., op den Camp H. J. M., Jetten M. S. M., Strous M.. 2008; Denitrifying bacteria anaerobically oxidize methane in the absence of Archaea . Environ Microbiol10:3164–3173
    [Google Scholar]
  9. Ettwig K. F., Butler M. K., Le Paslier D., Pelletier E., Mangenot S., Kuypers M. M. M., Schreiber F., Dutilh B. E., Zedelius J.. other authors 2010; Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature464:543–548
    [Google Scholar]
  10. Felsenstein J.. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution39:783–791
    [Google Scholar]
  11. Frazão C., Silva G., Gomes C. M., Matias P., Coelho R., Sieker L., Macedo S., Liu M. Y., Oliveira S.. other authors 2000; Structure of a dioxygen reduction enzyme from Desulfovibrio gigas . Nat Struct Biol7:1041–1045
    [Google Scholar]
  12. García-Horsman J. A., Barquera B., Rumbley J., Ma J. X., Gennis R. B.. 1994; The superfamily of heme-copper respiratory oxidases. J Bacteriol176:5587–5600
    [Google Scholar]
  13. Hakemian A. S., Rosenzweig A. C.. 2007; The biochemistry of methane oxidation. Annu Rev Biochem76:223–241
    [Google Scholar]
  14. Kita K., Konishi K., Anraku Y.. 1984; Terminal oxidases of Escherichia coli aerobic respiratory chain. I. Purification and properties of cytochrome b 562- o complex from cells in the early exponential phase of aerobic growth. J Biol Chem259:3368–3374
    [Google Scholar]
  15. Kitada M., Krulwich T. A.. 1984; Purification and characterization of the cytochrome oxidase from alkalophilic Bacillus firmus RAB. J Bacteriol158:963–966
    [Google Scholar]
  16. Kowalchuk G. A., de Bruijn F. J., Head I. M., Akkermans A. D., van Elsas J. D.. 2004; Molecular Microbial Ecology Manual (MMEM), 2nd edn.vol 1 London: Kluwer Academic Publishing;
    [Google Scholar]
  17. Krogh A., Larsson B., von Heijne G., Sonnhammer E. L. L.. 2001; Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol305:567–580
    [Google Scholar]
  18. Lauraeus M., Haltia T., Saraste M., Wikstrom M.. 1991; Bacillus subtilis expresses two kinds of haem-A-containing terminal oxidases. Eur J Biochem197:699–705
    [Google Scholar]
  19. Lemos S. S., Collins M. L. P., Eaton S. S., Eaton G. R., Antholine W. E.. 2000; Comparison of EPR-visible Cu2+ sites in pMMO from Methylococcus capsulatus (Bath) and Methylomicrobium album BG8. Biophys J79:1085–1094
    [Google Scholar]
  20. Moore A. L., Carré J. E., Affourtit C., Albury M. S., Crichton P. G., Kita K., Heathcote P.. 2008; Compelling EPR evidence that the alternative oxidase is a diiron carboxylate protein. Biochim Biophys Acta1777:327–330
    [Google Scholar]
  21. Musser S. M., Stowell M. H. B., Chan S. I.. 1993; Comparison of ubiquinol and cytochrome- c terminal oxidases – an alternative view. FEBS Lett327:131–136
    [Google Scholar]
  22. Pitcher R. S., Watmough N. J.. 2004; The bacterial cytochrome cbb 3 oxidases. Biochim Biophys Acta1655:388–399
    [Google Scholar]
  23. Puustinen A., Wikstrom M.. 1991; The heme groups of cytochrome o from Escherichia coli . Proc Natl Acad Sci U S A88:6122–6126
    [Google Scholar]
  24. Raghoebarsing A. A., Pol A., van de Pas-Schoonen K. T., Smolders A. J. P., Ettwig K. F., Rijpstra W. I. C., Schouten S., Damste J. S. S., Op den Camp H. J. M.. other authors 2006; A microbial consortium couples anaerobic methane oxidation to denitrification. Nature440:918–921
    [Google Scholar]
  25. Rich P. R.. 1978; Quinol oxidation in Arum maculatum mitochondria and its application to the assay, solubilisation and partial purification of the alternative oxidase. FEBS Lett96:252–256
    [Google Scholar]
  26. Saiki K., Mogi T., Ogura K., Anraku Y.. 1993; In vitro heme O synthesis by the cyoE gene product from Escherichia coli . J Biol Chem268:26041–26044
    [Google Scholar]
  27. Saitou N., Nei M.. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol4:406–425
    [Google Scholar]
  28. Schonbaum G. R., Bonner W. D. Jr, Storey B. T., Bahr J. T.. 1971; Specific inhibition of the cyanide-insensitive respiratory pathway in plant mitochondria by hydroxamic acids. Plant Physiol47:124–128
    [Google Scholar]
  29. Sonnhammer E. L., von Heijne G., Krogh A.. 1998; A hidden Markov model for predicting transmembrane helices in protein sequences. Proc Int Conf Intell Syst Mol Biol6:175–182
    [Google Scholar]
  30. Speno H., Taheri M. R., Sieburth D., Martin C. T.. 1995; Identification of essential amino acids within the proposed CuA binding site in subunit II of cytochrome c oxidase. J Biol Chem270:25363–25369
    [Google Scholar]
  31. Suharti Strampraad., F M. J, Schroder I., de Vries S.. 2001; A novel copper A containing menaquinol NO reductase from Bacillus azotoformans . Biochemistry40:2632–2639
    [Google Scholar]
  32. Tamura K., Dudley J., Nei M., Kumar S.. 2007; mega 4: molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol24:1596–1599
    [Google Scholar]
  33. Thompson J. D., Higgins D. G., Gibson T. J.. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res22:4673–4680
    [Google Scholar]
  34. van Ginkel C. G., Rikken G. B., Kroon A. G. M., Kengen S. W. M.. 1996; Purification and characterization of chlorite dismutase: a novel oxygen-generating enzyme. Arch Microbiol166:321–326
    [Google Scholar]
  35. Voggu L., Schlag S., Biswas R., Rosenstein R., Rausch C., Gotz F.. 2006; Microevolution of cytochrome bd oxidase in staphylococci and its implication in resistance to respiratory toxins released by Pseudomonas . J Bacteriol188:8079–8086
    [Google Scholar]
  36. von Wachenfeldt C., de Vries S., van der Oost J.. 1994; The CuA site of the caa 3-type oxidase of Bacillus subtilis is a mixed-valence binuclear copper centre. FEBS Lett340:109–113
    [Google Scholar]
  37. Wu M. L., Ettwig K. F., Jetten M. S. M., Strous M., Keltjens J. T., van Niftrik L.. 2011; A new intra-aerobic metabolism in the nitrite-dependent methane oxidizing bacterium ‘ Candidatus Methylomirabilis oxyfera’. Biochem Soc Trans (in press)
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.045187-0
Loading
/content/journal/micro/10.1099/mic.0.045187-0
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error