1887

Abstract

Bovine Johne's disease (paratuberculosis), caused by subspecies , poses a significant economic problem to the beef and dairy industry worldwide. Despite its relevance, however, pathogenesis of Johne's disease is still only partially resolved. Since mycobacterial membrane proteins expressed during infection are likely to play an important role in pathogenesis, membrane-enriched fractions, namely mucosa-derived membranes (MDM) and culture-derived membranes (CDM), of subsp. from three cows with clinical paratuberculosis were investigated. An initial analysis by 2D difference gel electrophoresis (2D DIGE) and MALDI-TOF-MS analysis revealed four differentially expressed proteins with only one predicted membrane protein. Due to this limited outcome, membrane preparations were subjected to a tube–gel trypsin digestion and investigated by using nanoflow-liquid-chromatography-coupled tandem MS. Based on this approach a total of 212 proteins were detected in MDM including 32 proteins of bovine origin; 275 proteins were detected in CDM 59 % of MDM and CDM proteins were predicted to be membrane-associated. A total of 130 of the proteins were detected in both MDM and CDM and 48 predicted membrane proteins were detected in MDM from at least two cows. Four of these proteins were not detected in CDM, implying differential expression in the host. All membrane-associated proteins, especially the four identified as being differentially expressed, might be relevant targets for further analyses into the pathogenesis of bovine paratuberculosis.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.044859-0
2011-02-01
2020-08-06
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/2/557.html?itemId=/content/journal/micro/10.1099/mic.0.044859-0&mimeType=html&fmt=ahah

References

  1. Aebersold R., Mann M.. 2003; Mass spectrometry-based proteomics. Nature422:198–207
    [Google Scholar]
  2. Agarwal N., Woolwifie S. C., Tyagi S., Bishai W. R.. 2007; Characterization of the Mycobacterium tuberculosis sigma factor SigM by assessment of virulence and identification of SigM-dependent genes. Infect Immun75:452–461
    [Google Scholar]
  3. Bannantine J. P., Huntley J. F. J., Miltner E., Stabel J. R., Bermudez L. E.. 2003; The Mycobacterium avium subsp paratuberculosis 35 kDa protein plays a role in invasion of bovine epithelial cells. Microbiology149:2061–2069
    [Google Scholar]
  4. Buettner F. F., Bendalla I. M., Bosse J. T., Meens J., Nash J. H., Hartig E., Langford P. R., Gerlach G. F.. 2009; Analysis of the Actinobacillus pleuropneumoniae HlyX (FNR) regulon and identification of iron-regulated protein B as an essential virulence factor. Proteomics9:2383–2398
    [Google Scholar]
  5. Camejo A., Buchrieser C., Couve E., Carvalho F., Reis O., Ferreira P., Sousa S., Cossart P., Cabanes D.. 2009; In vivo transcriptional profiling of Listeria monocytogenes and mutagenesis identify new virulence factors involved in infection. PLoS Pathog5:e1000449
    [Google Scholar]
  6. Carsiotis M., Stocker B. A. D., Weinstein D. L., Obrien A. D.. 1989; A Salmonella typhimurium virulence gene linked to flg . Infect Immun57:3276–3280
    [Google Scholar]
  7. Chen G., Pramanik B. N.. 2009; Application of LC/MS to proteomics studies: current status and future prospects. Drug Discov Today14:465–471
    [Google Scholar]
  8. Choy E., Whittington R. J., Marsh I., Marshall J., Campbell M. T.. 1998; A method for purification and characterisation of Mycobacterium avium subsp. paratuberculosis from the intestinal mucosa of sheep with Johne's disease. Vet Microbiol64:51–60
    [Google Scholar]
  9. de Lima C. S., Marques M. A., Debrie A. S., Almeida E. C., Silva C. A., Brennan P. J., Sarno E. N., Menozzi F. D., Pessolani M. C.. 2009; Heparin-binding hemagglutinin (HBHA) of Mycobacterium leprae is expressed during infection and enhances bacterial adherence to epithelial cells. FEMS Microbiol Lett292:162–169
    [Google Scholar]
  10. Delogu G., Brennan M. J.. 1999; Functional domains present in the mycobacterial hemagglutinin, HBHA. J Bacteriol181:7464–7469
    [Google Scholar]
  11. Egan S., Lanigan M., Shiell B., Beddome G., Stewart D., Vaughan J., Michalski W. P.. 2008; The recovery of Mycobacterium avium subspecies paratuberculosis from the intestine of infected ruminants for proteomic evaluation. J Microbiol Methods75:29–39
    [Google Scholar]
  12. Gehring A. J., Dobos K. M., Belisle O. T., Harding C. V., Boom W. H.. 2004; Mycobacterium tuberculosis LprG (Rv1411c): A novel TLR-2 ligand that inhibits human macrophage class II MHC antigen processing. J Immunol173:2660–2668
    [Google Scholar]
  13. Gioffré A., Infante E., Aguilar D., De La Paz Santangelo M., Klepp L., Amadio A., Meikle V., Etchechoury I., Romano M. I.. other authors 2005; Mutation in mce operons attenuates Mycobacterium tuberculosis virulence. Microbes Infect7:325–334
    [Google Scholar]
  14. Harriff M. J., Danelishvili L., Wu M., Wilder C., McNamara M., Kent M. L., Bermudez L. E.. 2009; Mycobacterium avium genes MAV_5138 and MAV_3679 are transcriptional regulators that play a role in invasion of epithelial cells, in part by their regulation of CipA, a putative surface protein interacting with host cell signaling pathways. J Bacteriol191:1132–1142
    [Google Scholar]
  15. Harris N. B., Barletta R. G.. 2001; Mycobacterium avium subsp. paratuberculosis in Veterinary Medicine. Clin Microbiol Rev14:489–512
    [Google Scholar]
  16. Hauser A. R., Kang P. J., Engel J. N.. 1998; PepA, a secreted protein of Pseudomonas aeruginosa , is necessary for cytotoxicity and virulence. Mol Microbiol27:807–818
    [Google Scholar]
  17. He Z. G., De Buck J.. 2010; Localization of proteins in the cell wall of Mycobacterium avium subsp paratuberculosis K10 by proteomic analysis. Proteome Sci8:21
    [Google Scholar]
  18. Henningsen R., Gale B. L., Straub K. M., DeNagel D. C.. 2002; Application of zwitterionic detergents to the solubilization of integral membrane proteins for two-dimensional gel electrophoresis and mass spectrometry. Proteomics2:1479–1488
    [Google Scholar]
  19. Hughes V., Smith S., Garcia-Sanchez A., Sales J., Stevenson K.. 2007; Proteomic comparison of Mycobacterium avium subspecies paratuberculosis grown in vitro and isolated from clinical cases of ovine paratuberculosis. Microbiology153:196–205
    [Google Scholar]
  20. Kreeger J. M.. 1991; Ruminant paratuberculosis – a century of progress and frustration. J Vet Diagn Invest3:373–382
    [Google Scholar]
  21. Lu X. N., Zhu H. N.. 2005; Tube–gel digestion – a novel proteomic approach for high throughput analysis of membrane proteins. Mol Cell Proteomics4:1948–1958
    [Google Scholar]
  22. Manning E. J., Collins M. T.. 2001; Mycobacterium avium subsp. paratuberculosis : pathogen, pathogenesis and diagnosis. Rev Sci Tech20:133–150
    [Google Scholar]
  23. Masungi C., Temmerman S., Van Vooren J. P., Drowart A., Pethe K., Menozzi F. D., Locht C., Mascart F.. 2002; Differential T and B cell responses against Mycobacterium tuberculosis heparin-binding hemagglutinin adhesin in infected healthy individuals and patients with tuberculosis. J Infect Dis185:513–520
    [Google Scholar]
  24. Mendoza J. L., Lana R., Diaz-Rubio M.. 2009; Mycobacterium avium subspecies paratuberculosis and its relationship with Crohn's disease. World J Gastroenterol15:417–422
    [Google Scholar]
  25. Menozzi F. D., Reddy V. M., Cayet D., Raze D., Debrie A. S., Dehouck M. P., Cecchelli R., Locht C.. 2006; Mycobacterium tuberculosis heparin-binding haemagglutinin adhesin (HBHA) triggers receptor-mediated transcytosis without altering the integrity of tight junctions. Microbes Infect8:1–9
    [Google Scholar]
  26. Möbius P., Fritsch I., Luyven G., Hotzel H., Kohler H.. 2009; Unique genotypes of Mycobacterium avium subsp. paratuberculosis strains of Type III. Vet Microbiol139:398–404
    [Google Scholar]
  27. Old W. M., Meyer-Arendt K., Aveline-Wolf L., Pierce K. G., Mendoza A., Sevinsky J. R., Resing K. A., Ahn N. G.. 2005; Comparison of label-free methods for quantifying human proteins by shotgun proteomics. Mol Cell Proteomics4:1487–1502
    [Google Scholar]
  28. Patel D., Danelishvili L., Yamazaki Y., Alonso M., Paustian M. L., Bannantine J. P., Meunier-Goddik L., Bermudez L. E.. 2006; The ability of Mycobacterium avium subsp. paratuberculosis to enter bovine epithelial cells is influenced by preexposure to a hyperosmolar environment and intracellular passage in bovine mammary epithelial cells. Infect Immun74:2849–2855
    [Google Scholar]
  29. Patton W. F.. 2000; A thousand points of light: the application of fluorescence detection technologies to two-dimensional gel electrophoresis and proteomics. Electrophoresis21:1123–1144
    [Google Scholar]
  30. Peterson Y. K., Winter-Vann A. M., Casey P. J.. 2005; Icmt. UCSD-Nature Molecule Pages. Published online 8 August 2005 doi: 10.1038/mp.a001154.01
    [Google Scholar]
  31. Pethe K., Alonso S., Biet F., Delogu G., Brennan M. J., Locht C., Menozzi F. D.. 2001; The heparin-binding haemagglutinin of M-tuberculosis is required for extrapulmonary dissemination. Nature412:190–194
    [Google Scholar]
  32. Pierce E. S.. 2009; Where are all the Mycobacterium avium subspecies paratuberculosis in patients with Crohn's disease?. PLoS Pathog5:e1000234
    [Google Scholar]
  33. Quadroni M., James P.. 1999; Proteomics and automation. Electrophoresis20:664–677
    [Google Scholar]
  34. Radosevich T. J., Reinhardt T. A., Lippolis J. D., Bannantine J. P., Stabel J. R.. 2007; Proteome and differential expression analysis of membrane and cytosolic proteins from Mycobacterium avium subsp. paratuberculosis strains K-10 and 187. J Bacteriol189:1109–1117
    [Google Scholar]
  35. Reddy V. M., Kumar B.. 2000; Interaction of Mycobacterium avium complex with human respiratory epithelial cells. J Infect Dis181:1189–1193
    [Google Scholar]
  36. Santema W., Overdijk M., Barends J., Krijgsveld J., Rutten V., Koets A.. 2009; Searching for proteins of Mycobacterium avium subspecies paratuberculosis with diagnostic potential by comparative qualitative proteomic analysis of mycobacterial tuberculins. Vet Microbiol138:191–196
    [Google Scholar]
  37. Santoni V., Molloy M., Rabilloud T.. 2000; Membrane proteins and proteomics: un amour impossible?. Electrophoresis21:1054–1070
    [Google Scholar]
  38. Sechi L. A., Ahmed N., Felis G. E., Dupre I., Cannas S., Fadda G., Bua A., Zanetti S.. 2006; Immunogenicity and cytoadherence of recombinant heparin binding haemagglutinin (HBHA) of Mycobacterium avium subsp paratuberculosis : functional promiscuity or a role in virulence?. Vaccine24:236–243
    [Google Scholar]
  39. Seibert V., Wiesner A., Buschmann T., Meuer J.. 2004; Surface-enhanced laser desorption ionization time-of-flight mass spectrometry (SELDI TOF-MS) and ProteinChip technology in proteomics research. Pathol Res Pract200:83–94
    [Google Scholar]
  40. Shevchenko A., Wilm M., Vorm O., Mann M.. 1996; Mass spectrometric sequencing of proteins from silver stained polyacrylamide gels. Anal Chem68:850–858
    [Google Scholar]
  41. Stack H. M., Sleator R. D., Bowers M., Hill C., Gahan C. G. M.. 2005; Role for HtrA in stress induction and virulence potential in Listeria monocytogenes . Appl Environ Microbiol71:4241–4247
    [Google Scholar]
  42. Talaat A. M., Lyons R., Howard S. T., Johnston S. A.. 2004; The temporal expression profile of Mycobacterium tuberculosis infection in mice. Proc Natl Acad Sci U S A101:4602–4607
    [Google Scholar]
  43. Talapatra A., Rouse R., Hardiman G.. 2002; Protein microarrays: challenges and promises. Pharmacogenomics3:527–536
    [Google Scholar]
  44. Xiong Y., Chalmers M. J., Gao F. P., Cross T. A., Marshall A. G.. 2005; Identification of Mycobacterium tuberculosis H37Rv integral membrane proteins by one-dimensional gel electrophoresis and liquid chromatography electrospray ionization tandem mass spectrometry. J Proteome Res4:855–861
    [Google Scholar]
  45. Zanetti S., Bua A., Delogu G., Pusceddu C., Mura M., Saba F., Pirina P., Garzelli C., Vertuccio C.. other authors 2005; Patients with pulmonary tuberculosis develop a strong humoral response against methylated heparin-binding hemagglutinin. Clin Diagn Lab Immunol12:1135–1138
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.044859-0
Loading
/content/journal/micro/10.1099/mic.0.044859-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error