1887

Abstract

The () gene of ATCC 13032 encodes a regulatory protein belonging to the MocR subfamily of GntR-type transcription regulators and consisting of an amino-terminal winged helix–turn–helix DNA-binding domain and a carboxy-terminal aminotransferase-like domain. A defined deletion in the gene resulted in the decreased expression of the divergently orientated genes coding for the subunits of pyridoxal 5′-phosphate synthase. The mutant NJ0898 and the mutant AMH17 showed vitamin B auxotrophy that was restored by supplementing the growth medium with either pyridoxal, pyridoxal 5′-phosphate or pyridoxamine. The genetic organization of the 89 bp intergenic region was elucidated by mapping the 5′ ends of the respective transcripts, followed by detection of typical promoter sequences. Bioinformatic pattern searches and comparative genomics revealed three DNA motifs with the consensus sequence AAAGTGGW(−/T)CTA, overlapping the deduced promoter sequences and serving as candidate DNA-binding sites for PdxR. DNA band shift assays with the purified PdxR protein demonstrated the specific binding of the transcription regulator to double-stranded 40-mer sequences containing the detected motifs, thereby confirming the direct regulatory role of PdxR in activating the expression of the genes.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.044818-0
2011-01-01
2020-01-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/1/77.html?itemId=/content/journal/micro/10.1099/mic.0.044818-0&mimeType=html&fmt=ahah

References

  1. Barreiro, C., Nakunst, D., Hüser, A. T., de Paz, H. D., Kalinowski, J. & Martin, J. F. ( 2009; ). Microarray studies reveal a ‘differential response’ to moderate or severe heat shock of the HrcA- and HspR-dependent systems in Corynebacterium glutamicum. Microbiology 155, 359–372.[CrossRef]
    [Google Scholar]
  2. Belitsky, B. R. ( 2004; ). Bacillus subtilis GabR, a protein with DNA-binding and aminotransferase domains, is a PLP-dependent transcriptional regulator. J Mol Biol 340, 655–664.[CrossRef]
    [Google Scholar]
  3. Belitsky, B. R. & Sonenshein, A. L. ( 2002; ). GabR, a member of a novel protein family, regulates the utilization of gamma-aminobutyrate in Bacillus subtilis. Mol Microbiol 45, 569–583.[CrossRef]
    [Google Scholar]
  4. Brinkrolf, K., Brune, I. & Tauch, A. ( 2007; ). The transcriptional regulatory network of the amino acid producer Corynebacterium glutamicum. J Biotechnol 129, 191–211.[CrossRef]
    [Google Scholar]
  5. Brune, I., Brinkrolf, K., Kalinowski, J., Pühler, A. & Tauch, A. ( 2005; ). The individual and common repertoire of DNA-binding transcriptional regulators of Corynebacterium glutamicum, Corynebacterium efficiens, Corynebacterium diphtheriae and Corynebacterium jeikeium deduced from the complete genome sequences. BMC Genomics 6, 86.[CrossRef]
    [Google Scholar]
  6. Brune, I., Jochmann, N., Brinkrolf, K., Hüser, A. T., Gerstmeir, R., Eikmanns, B. J., Kalinowski, J., Pühler, A. & Tauch, A. ( 2007; ). The IclR-type transcriptional repressor LtbR regulates the expression of leucine and tryptophan biosynthesis genes in the amino acid producer Corynebacterium glutamicum. J Bacteriol 189, 2720–2733.[CrossRef]
    [Google Scholar]
  7. Dsouza, M., Larsen, N. & Overbeek, R. ( 1997; ). Searching for patterns in genomic data. Trends Genet 13, 497–498.
    [Google Scholar]
  8. Eliot, A. C. & Kirsch, J. F. ( 2004; ). Pyridoxal phosphate enzymes: mechanistic, structural, and evolutionary considerations. Annu Rev Biochem 73, 383–415.[CrossRef]
    [Google Scholar]
  9. Fitzpatrick, T. B., Amrhein, N., Kappes, B., Macheroux, P., Tews, I. & Raschle, T. ( 2007; ). Two independent routes of de novo vitamin B6 biosynthesis: not that different after all. Biochem J 407, 1–13.[CrossRef]
    [Google Scholar]
  10. Gough, J., Karplus, K., Hughey, R. & Chothia, C. ( 2001; ). Assignment of homology to genome sequences using a library of hidden Markov models that represent all proteins of known structure. J Mol Biol 313, 903–919.[CrossRef]
    [Google Scholar]
  11. Grant, S. G., Jessee, J., Bloom, F. R. & Hanahan, D. ( 1990; ). Differential plasmid rescue from transgenic mouse DNAs into Escherichia coli methylation-restriction mutants. Proc Natl Acad Sci U S A 87, 4645–4649.[CrossRef]
    [Google Scholar]
  12. Horton, R. M., Hunt, H. D., Ho, S. N., Pullen, J. K. & Pease, L. R. ( 1989; ). Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension. Gene 77, 61–68.[CrossRef]
    [Google Scholar]
  13. Hoskisson, P. A. & Rigali, S. ( 2009; ). Chapter 1: variation in form and function of the helix-turn-helix regulators of the GntR superfamily. Adv Appl Microbiol 69, 1–22.
    [Google Scholar]
  14. Ikeda, M. & Nakagawa, S. ( 2003; ). The Corynebacterium glutamicum genome: features and impacts on biotechnological processes. Appl Microbiol Biotechnol 62, 99–109.[CrossRef]
    [Google Scholar]
  15. Jochmann, N., Kurze, A. K., Czaja, L. F., Brinkrolf, K., Brune, I., Hüser, A. T., Hansmeier, N., Pühler, A., Borovok, I. & Tauch, A. ( 2009; ). Genetic makeup of the Corynebacterium glutamicum LexA regulon deduced from comparative transcriptomics and in vitro DNA band shift assays. Microbiology 155, 1459–1477.[CrossRef]
    [Google Scholar]
  16. Kalinowski, J., Bathe, B., Bartels, D., Bischoff, N., Bott, M., Burkovski, A., Dusch, N., Eggeling, L., Eikmanns, B. J. & other authors ( 2003; ). The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of l-aspartate-derived amino acids and vitamins. J Biotechnol 104, 5–25.[CrossRef]
    [Google Scholar]
  17. Keilhauer, C., Eggeling, L. & Sahm, H. ( 1993; ). Isoleucine synthesis in Corynebacterium glutamicum: molecular analysis of the ilvB-ilvN-ilvC operon. J Bacteriol 175, 5595–5603.
    [Google Scholar]
  18. Kirchner, O. & Tauch, A. ( 2003; ). Tools for genetic engineering in the amino acid-producing bacterium Corynebacterium glutamicum. J Biotechnol 104, 287–299.[CrossRef]
    [Google Scholar]
  19. Kohl, T. A. & Tauch, A. ( 2009; ). The GlxR regulon of the amino acid producer Corynebacterium glutamicum: detection of the corynebacterial core regulon and integration into the transcriptional regulatory network model. J Biotechnol 143, 239–246.[CrossRef]
    [Google Scholar]
  20. Kurtz, S., Choudhuri, J. V., Ohlebusch, E., Schleiermacher, C., Stoye, J. & Giegerich, R. ( 2001; ). REPuter: the manifold applications of repeat analysis on a genomic scale. Nucleic Acids Res 29, 4633–4642.[CrossRef]
    [Google Scholar]
  21. Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., Valentin, F., Wallace, I. M., Wilm, A. & other authors ( 2007; ). clustal w and clustal_x version 2.0. Bioinformatics 23, 2947–2948.[CrossRef]
    [Google Scholar]
  22. Magarvey, N., He, J., Aidoo, K. A. & Vining, L. C. ( 2001; ). The pdx genetic marker adjacent to the chloramphenicol biosynthesis gene cluster in Streptomyces venezuelae ISP5230: functional characterization. Microbiology 147, 2103–2112.
    [Google Scholar]
  23. Marchler-Bauer, A., Anderson, J. B., Chitsaz, F., Derbyshire, M. K., DeWeese-Scott, C., Fong, J. H., Geer, L. Y., Geer, R. C., Gonzales, N. R. & other authors ( 2009; ). CDD: specific functional annotation with the Conserved Domain Database. Nucleic Acids Res 37, D205–D210.[CrossRef]
    [Google Scholar]
  24. Marienhagen, J., Kennerknecht, N., Sahm, H. & Eggeling, L. ( 2005; ). Functional analysis of all aminotransferase proteins inferred from the genome sequence of Corynebacterium glutamicum. J Bacteriol 187, 7639–7646.[CrossRef]
    [Google Scholar]
  25. Markowitz, V. M., Korzeniewski, F., Palaniappan, K., Szeto, E., Werner, G., Padki, A., Zhao, X., Dubchak, I., Hugenholtz, P. & other authors ( 2006; ). The integrated microbial genomes (IMG) system. Nucleic Acids Res 34, D344–D348.[CrossRef]
    [Google Scholar]
  26. McHardy, A. C., Tauch, A., Rückert, C., Pühler, A. & Kalinowski, J. ( 2003; ). Genome-based analysis of biosynthetic aminotransferase genes of Corynebacterium glutamicum. J Biotechnol 104, 229–240.[CrossRef]
    [Google Scholar]
  27. Mormann, S., Lömker, A., Rückert, C., Gaigalat, L., Tauch, A., Pühler, A. & Kalinowski, J. ( 2006; ). Random mutagenesis in Corynebacterium glutamicum ATCC 13032 using an IS6100-based transposon vector identified the last unknown gene in the histidine biosynthesis pathway. BMC Genomics 7, 205.[CrossRef]
    [Google Scholar]
  28. Pátek, M., Nesvera, J., Guyonvarch, A., Reyes, O. & Leblon, G. ( 2003; ). Promoters of Corynebacterium glutamicum. J Biotechnol 104, 311–323.[CrossRef]
    [Google Scholar]
  29. Rigali, S., Derouaux, A., Giannotta, F. & Dusart, J. ( 2002; ). Subdivision of the helix-turn-helix GntR family of bacterial regulators in the FadR, HutC, MocR, and YtrA subfamilies. J Biol Chem 277, 12507–12515.[CrossRef]
    [Google Scholar]
  30. Rodionov, D. A. ( 2007; ). Comparative genomic reconstruction of transcriptional regulatory networks in bacteria. Chem Rev 107, 3467–3497.[CrossRef]
    [Google Scholar]
  31. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY. : Cold Spring Harbor Laboratory.
    [Google Scholar]
  32. Schäfer, A., Tauch, A., Jäger, W., Kalinowski, J., Thierbach, G. & Pühler, A. ( 1994; ). Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene 145, 69–73.[CrossRef]
    [Google Scholar]
  33. Schneider, G., Kack, H. & Lindqvist, Y. ( 2000; ). The manifold of vitamin B6 dependent enzymes. Structure 8, R1–R6.[CrossRef]
    [Google Scholar]
  34. Sigrist, C. J., Cerutti, L., de Castro, E., Langendijk-Genevaux, P. S., Bulliard, V., Bairoch, A. & Hulo, N. ( 2010; ). PROSITE, a protein domain database for functional characterization and annotation. Nucleic Acids Res 38, D161–D166.[CrossRef]
    [Google Scholar]
  35. Strohmeier, M., Raschle, T., Mazurkiewicz, J., Rippe, K., Sinning, I., Fitzpatrick, T. B. & Tews, I. ( 2006; ). Structure of a bacterial pyridoxal 5′-phosphate synthase complex. Proc Natl Acad Sci U S A 103, 19284–19289.[CrossRef]
    [Google Scholar]
  36. Tanaka, T., Tateno, Y. & Gojobori, T. ( 2005; ). Evolution of vitamin B6 (pyridoxine) metabolism by gain and loss of genes. Mol Biol Evol 22, 243–250.
    [Google Scholar]
  37. Tauch, A., Kirchner, O., Wehmeier, L., Kalinowski, J. & Pühler, A. ( 1994; ). Corynebacterium glutamicum DNA is subjected to methylation-restriction in Escherichia coli. FEMS Microbiol Lett 123, 343–347.[CrossRef]
    [Google Scholar]
  38. Tauch, A., Kassing, F., Kalinowski, J. & Pühler, A. ( 1995; ). The Corynebacterium xerosis composite transposon Tn5432 consists of two identical insertion sequences, designated IS1249, flanking the erythromycin resistance gene ermCX. Plasmid 34, 119–131.[CrossRef]
    [Google Scholar]
  39. Tauch, A., Kirchner, O., Löffler, B., Götker, S., Pühler, A. & Kalinowski, J. ( 2002; ). Efficient electrotransformation of Corynebacterium diphtheriae with a mini-replicon derived from the Corynebacterium glutamicum plasmid pGA1. Curr Microbiol 45, 362–367.[CrossRef]
    [Google Scholar]
  40. Wiethaus, J., Schubert, B., Pfänder, Y., Narberhaus, F. & Masepohl, B. ( 2008; ). The GntR-like regulator TauR activates expression of taurine utilization genes in Rhodobacter capsulatus. J Bacteriol 190, 487–493.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.044818-0
Loading
/content/journal/micro/10.1099/mic.0.044818-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error