1887

Abstract

The chemotaxis pathway employs a receptor methylation system that functions differently from the one in the canonical pathway. Previously, we hypothesized that employs a site-specific methylation system for adaptation where methyl groups are added and removed at different sites. This study investigated how covalent modifications to the adaptation region of the chemotaxis receptor McpB altered its apparent affinity for its cognate ligand, asparagine, and also its ability to activate the CheA kinase. This receptor has three closely spaced adaptation sites located at residues Gln371, Glu630 and Glu637. We found that amidation, a putative methylation mimic, of site 371 increased the receptor's apparent affinity for asparagine and its ability to activate the CheA kinase. Conversely, amidation of sites 630 and 637 reduced the receptor's ability to activate the kinase but did not affect the apparent affinity for asparagine, suggesting that activity and sensitivity are independently controlled in . We also examined how electrostatic interactions may underlie this behaviour, using homology models. These findings further our understanding of the site-specific methylation system in by demonstrating how the modification of specific sites can have varying effects on receptor function.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.044685-0
2011-01-01
2024-10-09
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/1/56.html?itemId=/content/journal/micro/10.1099/mic.0.044685-0&mimeType=html&fmt=ahah

References

  1. Alexander R. P., Zhulin I. B. 2007; Evolutionary genomics reveals conserved structural determinants of signaling and adaptation in microbial chemoreceptors. Proc Natl Acad Sci U S A 104:2885–2890
    [Google Scholar]
  2. Aravind L., Ponting C. P. 1999; The cytoplasmic helical linker domain of receptor histidine kinase and methyl-accepting proteins is common to many prokaryotic signalling proteins. FEMS Microbiol Lett 176:111–116
    [Google Scholar]
  3. Arnold K., Bordoli L., Kopp J., Schwede T. 2006; The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22:195–201
    [Google Scholar]
  4. Baker N. A., Sept D., Joseph S., Holst M. J., McCammon J. A. 2001; Electrostatics of nanosystems: application to microtubules and the ribosome. Proc Natl Acad Sci U S A 98:10037–10041
    [Google Scholar]
  5. Berg H. C., Brown D. A. 1972; Chemotaxis in Escherichia coli analysed by three-dimensional tracking. Nature 239:500–504
    [Google Scholar]
  6. Berg H. C., Purcell E. M. 1977; Physics of chemoreception. Biophys J 20:193–219
    [Google Scholar]
  7. Bischoff D. S., Ordal G. W. 1991; Sequence and characterization of Bacillus subtilis CheB, a homolog of Escherichia coli CheY, and its role in a different mechanism of chemotaxis. J Biol Chem 266:12301–12305
    [Google Scholar]
  8. Bischoff D. S., Bourret R. B., Kirsch M. L., Ordal G. W. 1993; Purification and characterization of Bacillus subtilis CheY. Biochemistry 32:9256–9261
    [Google Scholar]
  9. Block S. M., Segall J. E., Berg H. C. 1983; Adaptation kinetics in bacterial chemotaxis. J Bacteriol 154:312–323
    [Google Scholar]
  10. Briegel A., Ortega D. R., Tocheva E. I., Wuichet K., Li Z., Chen S., Müller A., Iancu C. V., Murphy G. E. other authors 2009; Universal architecture of bacterial chemoreceptor arrays. Proc Natl Acad Sci U S A 106:17181–17186
    [Google Scholar]
  11. Burgess-Cassler A., Ullah A. H., Ordal G. W. 1982; Purification and characterization of Bacillus subtilis methyl-accepting chemotaxis protein methyltransferase II. J Biol Chem 257:8412–8417
    [Google Scholar]
  12. Chervitz S. A., Falke J. J. 1996; Molecular mechanism of transmembrane signaling by the aspartate receptor: a model. Proc Natl Acad Sci U S A 93:2545–2550
    [Google Scholar]
  13. Dunten P., Koshland D. E. Jr 1991; Tuning the responsiveness of a sensory receptor via covalent modification. J Biol Chem 266:1491–1496
    [Google Scholar]
  14. Garrity L. F., Ordal G. W. 1997; Activation of the CheA kinase by asparagine in Bacillus subtilis chemotaxis. Microbiology 143:2945–2951
    [Google Scholar]
  15. Glekas G. D., Foster R. M., Cates J. R., Estrella J. A., Wawrzyniak M. J., Rao C. V., Ordal G. W. 2010; A PAS domain binds asparagine in the chemotaxis receptor McpB in Bacillus subtilis . J Biol Chem 285:1870–1878
    [Google Scholar]
  16. Goldman D. J., Nettleton D. O., Ordal G. W. 1984; Purification and characterization of chemotactic methylesterase from Bacillus subtilis . Biochemistry 23:675–680
    [Google Scholar]
  17. Hanlon D. W., Ordal G. W. 1994; Cloning and characterization of genes encoding methyl-accepting chemotaxis proteins in Bacillus subtilis . J Biol Chem 269:14038–14046
    [Google Scholar]
  18. Honig B., Nicholls A. 1995; Classical electrostatics in biology and chemistry. Science 268:1144–1149
    [Google Scholar]
  19. Hou S., Larsen R. W., Boudko D., Riley C. W., Karatan E., Zimmer M., Ordal G. W., Alam M. 2000; Myoglobin-like aerotaxis transducers in Archaea and Bacteria. Nature 403:540–544
    [Google Scholar]
  20. Karatan E., Saulmon M. M., Bunn M. W., Ordal G. W. 2001; Phosphorylation of the response regulator CheV is required for adaptation to attractants during Bacillus subtilis chemotaxis. J Biol Chem 276:43618–43626
    [Google Scholar]
  21. Keymer J. E., Endres R. G., Skoge M., Meir Y., Wingreen N. S. 2006; Chemosensing in Escherichia coli : two regimes of two-state receptors. Proc Natl Acad Sci U S A 103:1786–1791
    [Google Scholar]
  22. Kiefer F., Arnold K., Kunzli M., Bordoli L., Schwede T. 2009; The SWISS-MODEL repository and associated resources. Nucleic Acids Res 37:D387–D392
    [Google Scholar]
  23. Kim K. K., Yokota H., Kim S. H. 1999; Four-helical-bundle structure of the cytoplasmic domain of a serine chemotaxis receptor. Nature 400:787–792
    [Google Scholar]
  24. Kirby J. R., Saulmon M. M., Kristich C. J., Ordal G. W. 1999; CheY-dependent methylation of the asparagine receptor, McpB, during chemotaxis in Bacillus subtilis . J Biol Chem 274:11092–11100
    [Google Scholar]
  25. Kirby J. R., Kristich C. J., Saulmon M. M., Zimmer M. A., Garrity L. F., Zhulin I. B., Ordal G. W. 2001; CheC is related to the family of flagellar switch proteins and acts independently from CheD to control chemotaxis in Bacillus subtilis . Mol Microbiol 42:573–585
    [Google Scholar]
  26. Kirsch M. L., Peters P. D., Hanlon D. W., Kirby J. R., Ordal G. W. 1993a; Chemotactic methylesterase promotes adaptation to high concentrations of attractant in Bacillus subtilis . J Biol Chem 268:18610–18616
    [Google Scholar]
  27. Kirsch M. L., Zuberi A. R., Henner D., Peters P. D., Yazdi M. A., Ordal G. W. 1993b; Chemotactic methyltransferase promotes adaptation to repellents in Bacillus subtilis . J Biol Chem 268:25350–25356
    [Google Scholar]
  28. Kristich C. J. 2002; Chemotactic sensory transduction in Bacillus subtilis: a new enzyme and a new pathway . PhD thesis University of Illinois at Urbana-Champaign;
    [Google Scholar]
  29. Kristich C. J., Ordal G. W. 2002; Bacillus subtilis CheD is a chemoreceptor modification enzyme required for chemotaxis. J Biol Chem 277:25356–25362
    [Google Scholar]
  30. Lamanna A. C., Ordal G. W., Kiessling L. L. 2005; Large increases in attractant concentration disrupt the polar localization of bacterial chemoreceptors. Mol Microbiol 57:774–785
    [Google Scholar]
  31. Le Moual H., Koshland D. E. Jr 1996; Molecular evolution of the C-terminal cytoplasmic domain of a superfamily of bacterial receptors involved in taxis. J Mol Biol 261:568–585
    [Google Scholar]
  32. Li G., Weis R. M. 2000; Covalent modification regulates ligand binding to receptor complexes in the chemosensory system of Escherichia coli . Cell 100:357–365
    [Google Scholar]
  33. Macnab R. M., Koshland D. E. Jr 1972; The gradient-sensing mechanism in bacterial chemotaxis. Proc Natl Acad Sci U S A 69:2509–2512
    [Google Scholar]
  34. Mello B. A., Tu Y. 2005; An allosteric model for heterogeneous receptor complexes: understanding bacterial chemotaxis responses to multiple stimuli. Proc Natl Acad Sci U S A 102:17354–17359
    [Google Scholar]
  35. Mesibov R., Ordal G. W., Adler J. 1973; The range of attractant concentrations for bacterial chemotaxis and the threshold and size of response over this range. Weber law and related phenomena. J Gen Physiol 62:203–223
    [Google Scholar]
  36. Muff T. J., Ordal G. W. 2007; The CheC phosphatase regulates chemotactic adaptation through CheD. J Biol Chem 282:34120–34128
    [Google Scholar]
  37. Ordal G. W., Villani D. P., Gibson K. J. 1977; Amino acid chemoreceptors of Bacillus subtilis . J Bacteriol 129:156–165
    [Google Scholar]
  38. Park S. Y., Borbat P. P., Gonzalez-Bonet G., Bhatnagar J., Pollard A. M., Freed J. H., Bilwes A. M., Crane B. R. 2006; Reconstruction of the chemotaxis receptor–kinase assembly. Nat Struct Mol Biol 13:400–407
    [Google Scholar]
  39. Pittman M. S., Goodwin M., Kelly D. J. 2001; Chemotaxis in the human gastric pathogen Helicobacter pylori : different roles for CheW and the three CheV paralogues, and evidence for CheV2 phosphorylation. Microbiology 147:2493–2504
    [Google Scholar]
  40. Rao C. V., Ordal G. W. 2009; The molecular basis of excitation and adaptation during chemotactic sensory transduction in bacteria. Contrib Microbiol 16:33–64
    [Google Scholar]
  41. Rao C. V., Frenklach M., Arkin A. P. 2004; An allosteric model for transmembrane signaling in bacterial chemotaxis. J Mol Biol 343:291–303
    [Google Scholar]
  42. Rao C. V., Glekas G. D., Ordal G. W. 2008; The three adaptation systems of Bacillus subtilis chemotaxis. Trends Microbiol 16:480–487
    [Google Scholar]
  43. Saulmon M. M., Karatan E., Ordal G. W. 2004; Effect of loss of CheC and other adaptational proteins on chemotactic behaviour in Bacillus subtilis . Microbiology 150:581–589
    [Google Scholar]
  44. Segall J. E., Block S. M., Berg H. C. 1986; Temporal comparisons in bacterial chemotaxis. Proc Natl Acad Sci U S A 83:8987–8991
    [Google Scholar]
  45. Shapiro M. J., Koshland D. E. Jr 1994; Mutagenic studies of the interaction between the aspartate receptor and methyltransferase from Escherichia coli . J Biol Chem 269:11054–11059
    [Google Scholar]
  46. Sourjik V., Berg H. C. 2002a; Receptor sensitivity in bacterial chemotaxis. Proc Natl Acad Sci U S A 99:123–127
    [Google Scholar]
  47. Sourjik V., Berg H. C. 2002b; Binding of the Escherichia coli response regulator CheY to its target measured in vivo by fluorescence resonance energy transfer. Proc Natl Acad Sci U S A 99:12669–12674
    [Google Scholar]
  48. Sourjik V., Berg H. C. 2004; Functional interactions between receptors in bacterial chemotaxis. Nature 428:437–441
    [Google Scholar]
  49. Starrett D. J., Falke J. J. 2005; Adaptation mechanism of the aspartate receptor: electrostatics of the adaptation subdomain play a key role in modulating kinase activity. Biochemistry 44:1550–1560
    [Google Scholar]
  50. Swain K. E., Gonzalez M. A., Falke J. J. 2009; Engineered socket study of signaling through a four-helix bundle: evidence for a yin–yang mechanism in the kinase control module of the aspartate receptor. Biochemistry 48:9266–9277
    [Google Scholar]
  51. Szurmant H., Ordal G. W. 2004; Diversity in chemotaxis mechanisms among the bacteria and archaea. Microbiol Mol Biol Rev 68:301–319
    [Google Scholar]
  52. Szurmant H., Bunn M. W., Cho S. H., Ordal G. W. 2004; Ligand-induced conformational changes in the Bacillus subtilis chemoreceptor McpB determined by disulfide crosslinking in vivo . J Mol Biol 344:919–928
    [Google Scholar]
  53. Ullah A. H., Ordal G. W. 1981; In vivo and in vitro chemotactic methylation in Bacillus subtilis . J Bacteriol 145:958–965
    [Google Scholar]
  54. Wuichet K., Alexander R. P., Zhulin I. B. 2007; Comparative genomic and protein sequence analyses of a complex system controlling bacterial chemotaxis. Methods Enzymol 422:1–31
    [Google Scholar]
  55. Yeh J. I., Biemann H. P., Pandit J., Koshland D. E., Kim S. H. 1993; The three-dimensional structure of the ligand-binding domain of a wild-type bacterial chemotaxis receptor. Structural comparison to the cross-linked mutant forms and conformational changes upon ligand binding. J Biol Chem 268:9787–9792
    [Google Scholar]
  56. Zimmer M. A., Tiu J., Collins M. A., Ordal G. W. 2000; Selective methylation changes on the Bacillus subtilis chemotaxis receptor McpB promote adaptation. J Biol Chem 275:24264–24272
    [Google Scholar]
  57. Zimmer M. A., Szurmant H., Saulmon M. M., Collins M. A., Bant J. S., Ordal G. W. 2002; The role of heterologous receptors in McpB-mediated signalling in Bacillus subtilis chemotaxis. Mol Microbiol 45:555–568
    [Google Scholar]
/content/journal/micro/10.1099/mic.0.044685-0
Loading
/content/journal/micro/10.1099/mic.0.044685-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error