1887

Abstract

pCGR2 and pCG1 belong to different subfamilies of the pCG1 family of plasmids. Nonetheless, they harbour homologous putative antisense RNA genes, and , respectively. The genes in turn share identical positions complementary to the leader region of their respective (encoding plasmid replication initiator) genes. Determination of their precise transcriptional start- and end-points revealed the presence of short antisense RNA molecules (72 bp, CrrI; and 73 bp, CgrI). These short RNAs and their target mRNAs were predicted to form highly structured molecules comprising stem–loops with known U-turn motifs. Abolishing synthesis of CrrI and CgrI by promoter mutagenesis resulted in about sevenfold increase in plasmid copy number on top of an 11-fold (CrrI) and 32-fold (CgrI) increase in mRNA, suggesting that CrrI and CgrI negatively control plasmid replication. This control is accentuated by a gene that encodes a small centromere-binding plasmid-partitioning protein, and is located upstream of . Simultaneous deactivation of CrrI and led to a drastic 87-fold increase in copy number of a pCGR2-derived shuttle vector. Moreover, the fact that changes in the structure of the terminal loops of CrrI and CgrI affected plasmid copy number buttressed the important role of the loop structure in formation of the initial interaction complexes between antisense RNAs and their target mRNAs. Similar antisense RNA control systems are likely to exist not only in the two pCG1 subfamilies but also in related plasmids across species.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.043745-0
2010-12-01
2019-12-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/12/3609.html?itemId=/content/journal/micro/10.1099/mic.0.043745-0&mimeType=html&fmt=ahah

References

  1. Archer, J. A. & Sinskey, A. J. ( 1993; ). The DNA sequence and minimal replicon of the Corynebacterium glutamicum plasmid pSR1: evidence of a common ancestry with plasmids from C. diphtheriae. J Gen Microbiol 139, 1753–1759.[CrossRef]
    [Google Scholar]
  2. Athanasopoulos, V., Praszkier, J. & Pittard, A. J. ( 1999; ). Analysis of elements involved in pseudoknot-dependent expression and regulation of the repA gene of an IncL/M plasmid. J Bacteriol 181, 1811–1819.
    [Google Scholar]
  3. Bernard, K. A., Wiebe, D., Burdz, T., Reimer, A., Ng, B., Singh, C., Schindle, S. & Pacheco, A. L. ( 2010; ). Assignment of Brevibacterium stationis (ZoBell and Upham 1944) Breed 1953 to the genus Corynebacterium, as Corynebacterium stationis comb. nov., and emended description of the genus Corynebacterium to include isolates that can alkalinize citrate. Int J Syst Evol Microbiol 60, 874–879.[CrossRef]
    [Google Scholar]
  4. Brantl, S. ( 2002; ). Antisense RNAs in plasmids: control of replication and maintenance. Plasmid 48, 165–173.[CrossRef]
    [Google Scholar]
  5. Brantl, S. ( 2007; ). Regulatory mechanisms employed by cis-encoded antisense RNAs. Curr Opin Microbiol 10, 102–109.[CrossRef]
    [Google Scholar]
  6. Brune, I., Becker, A., Paarmann, D., Albersmeier, A., Kalinowski, J., Puhler, A. & Tauch, A. ( 2006; ). Under the influence of the active deodorant ingredient 4-hydroxy-3-methoxybenzyl alcohol, the skin bacterium Corynebacterium jeikeium moderately responds with differential gene expression. J Biotechnol 127, 21–33.[CrossRef]
    [Google Scholar]
  7. Davison, J. ( 1984; ). Mechanism of control of DNA replication and incompatibility in ColE1-type plasmids – a review. Gene 28, 1–15.[CrossRef]
    [Google Scholar]
  8. de la Hoz, A. B., Ayora, S., Sitkiewicz, I., Fernandez, S., Pankiewicz, R., Alonso, J. C. & Ceglowski, P. ( 2000; ). Plasmid copy-number control and better-than-random segregation genes of pSM19035 share a common regulator. Proc Natl Acad Sci U S A 97, 728–733.[CrossRef]
    [Google Scholar]
  9. del Solar, G. & Espinosa, M. ( 2000; ). Plasmid copy number control: an ever-growing story. Mol Microbiol 37, 492–500.
    [Google Scholar]
  10. del Solar, G., Giraldo, R., Ruiz-Echevarria, M. J., Espinosa, M. & Diaz-Orejas, R. ( 1998; ). Replication and control of circular bacterial plasmids. Microbiol Mol Biol Rev 62, 434–464.
    [Google Scholar]
  11. Franch, T. & Gerdes, K. ( 2000; ). U-turns and regulatory RNAs. Curr Opin Microbiol 3, 159–164.[CrossRef]
    [Google Scholar]
  12. Franch, T., Petersen, M., Wagner, E. G., Jacobsen, J. P. & Gerdes, K. ( 1999; ). Antisense RNA regulation in prokaryotes: rapid RNA/RNA interaction facilitated by a general U-turn loop structure. J Mol Biol 294, 1115–1125.[CrossRef]
    [Google Scholar]
  13. Gutell, R. R., Cannone, J. J., Konings, D. & Gautheret, D. ( 2000; ). Predicting U-turns in ribosomal RNA with comparative sequence analysis. J Mol Biol 300, 791–803.[CrossRef]
    [Google Scholar]
  14. Heidrich, N. & Brantl, S. ( 2007; ). Antisense RNA-mediated transcriptional attenuation in plasmid pIP501: the simultaneous interaction between two complementary loop pairs is required for efficient inhibition by the antisense RNA. Microbiology 153, 420–427.[CrossRef]
    [Google Scholar]
  15. Hjalt, T. & Wagner, E. G. ( 1992; ). The effect of loop size in antisense and target RNAs on the efficiency of antisense RNA control. Nucleic Acids Res 20, 6723–6732.[CrossRef]
    [Google Scholar]
  16. Hofacker, I. L., Fontana, W., Stadler, P. F., Bonhoeffer, L. S., Tacker, M. & Schuster, P. ( 1994; ). Fast folding and comparison of RNA secondary structures. Monatsh Chem 125, 167–188.[CrossRef]
    [Google Scholar]
  17. Inui, M., Suda, M., Okino, S., Nonaka, H., Puskas, L. G., Vertes, A. A. & Yukawa, H. ( 2007; ). Transcriptional profiling of Corynebacterium glutamicum metabolism during organic acid production under oxygen deprivation conditions. Microbiology 153, 2491–2504.[CrossRef]
    [Google Scholar]
  18. Katsumata, R., Ozaki, A., Oka, T. & Furuya, A. ( 1984; ). Protoplast transformation of glutamate-producing bacteria with plasmid DNA. J Bacteriol 159, 306–311.
    [Google Scholar]
  19. Khan, S. A. ( 1997; ). Rolling-circle replication of bacterial plasmids. Microbiol Mol Biol Rev 61, 442–455.
    [Google Scholar]
  20. Kim, S. W., Jeong, I. S., Jeong, E. J., Tak, J. I., Lee, J. H., Eo, S. K., Kang, H. Y. & Bahk, J. D. ( 2008; ). The terminal and internal hairpin loops of the ctRNA of plasmid pJB01 play critical roles in regulating copy number. Mol Cells 26, 26–33.
    [Google Scholar]
  21. Kinoshita, S., Udaka, S. & Shimono, M. ( 1957; ). Studies on the amino acid fermentation. Part I. Production of l-glutamic acid by various microorganisms. J Gen Appl Microbiol 3, 193–205.[CrossRef]
    [Google Scholar]
  22. Kurusu, Y., Satoh, Y., Inui, M., Kohama, K., Kobayashi, M., Terasawa, M. & Yukawa, H. ( 1991; ). Identification of plasmid partition function in coryneform bacteria. Appl Environ Microbiol 57, 759–764.
    [Google Scholar]
  23. Le Chatelier, E., Ehrlich, S. D. & Janniere, L. ( 1996; ). Countertranscript-driven attenuation system of the pAMβ1 repE gene. Mol Microbiol 20, 1099–1112.[CrossRef]
    [Google Scholar]
  24. Nešvera, J., Pátek, M., Hochmannova, J., Abrhamova, Z., Becvarova, V., Jelinkova, M. & Vohradsky, J. ( 1997; ). Plasmid pGA1 from Corynebacterium glutamicum codes for a gene product that positively influences plasmid copy number. J Bacteriol 179, 1525–1532.
    [Google Scholar]
  25. Nishio, Y., Nakamura, Y., Kawarabayasi, Y., Usuda, Y., Kimura, E., Sugimoto, S., Matsui, K., Yamagishi, A., Kikuchi, H. & other authors ( 2003; ). Comparative complete genome sequence analysis of the amino acid replacements responsible for the thermostability of Corynebacterium efficiens. Genome Res 13, 1572–1579.[CrossRef]
    [Google Scholar]
  26. Novick, R. P., Iordanescu, S., Projan, S. J., Kornblum, J. & Edelman, I. ( 1989; ). pT181 plasmid replication is regulated by a countertranscript-driven transcriptional attenuator. Cell 59, 395–404.[CrossRef]
    [Google Scholar]
  27. Ow, D. S.-W., Nissom, P. M., Philp, R., Oh, S. K.-W. & Yap, M. G.-S. ( 2006; ). Global transcriptional analysis of metabolic burden due to plasmid maintenance in Escherichia coli DH5 during batch fermentation. Enzyme Microb Technol 39, 391–398.[CrossRef]
    [Google Scholar]
  28. Ozaki, A., Katsumata, R., Oka, T. & Furuya, A. ( 1984; ). Functional expression of the genes of Escherichia coli in Gram-positive Corynebacterium glutamicum. Mol Gen Genet 196, 175–178.[CrossRef]
    [Google Scholar]
  29. Pátek, M., Nešvera, J., Guyonvarch, A., Reyes, O. & Leblon, G. ( 2003; ). Promoters of Corynebacterium glutamicum. J Biotechnol 104, 311–323.[CrossRef]
    [Google Scholar]
  30. Rasooly, A. & Rasooly, R. S. ( 1997; ). How rolling circle plasmids control their copy number. Trends Microbiol 5, 440–446.[CrossRef]
    [Google Scholar]
  31. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY. : Cold Spring Harbor Laboratory.
    [Google Scholar]
  32. Siemering, K. R., Praszkier, J. & Pittard, A. J. ( 1994; ). Mechanism of binding of the antisense and target RNAs involved in the regulation of IncB plasmid replication. J Bacteriol 176, 2677–2688.
    [Google Scholar]
  33. Sonnen, H., Thierbach, G., Kautz, S., Kalinowski, J., Schneider, J., Pühler, A. & Kutzner, H. J. ( 1991; ). Characterization of pGA1, a new plasmid from Corynebacterium glutamicum LP-6. Gene 107, 69–74.[CrossRef]
    [Google Scholar]
  34. Takeda, Y., Fujii, M., Nakajyoh, Y., Nishimura, T. & Isshiki, S. ( 1990; ). Isolation of a tetracycline resistance plasmid from a glutamate-producing Corynebacterium, Corynebacterium melassecola. J Ferment Bioeng 70, 177–179.[CrossRef]
    [Google Scholar]
  35. Tauch, A. ( 2005; ). Native plasmids of amino acid-producing corynebacteria. In Handbook of Corynebacterium Glutamicum, pp. 57–80. Edited by Eggeling, L. & Bott, M.. Boca Raton, FL. : CRC Press.
    [Google Scholar]
  36. Tauch, A., Krieft, S., Kalinowski, J. & Puhler, A. ( 2000; ). The 51,409-bp R-plasmid pTP10 from the multiresistant clinical isolate Corynebacterium striatum M82B is composed of DNA segments initially identified in soil bacteria and in plant, animal, and human pathogens. Mol Gen Genet 263, 1–11.[CrossRef]
    [Google Scholar]
  37. Tauch, A., Gotker, S., Pühler, A., Kalinowski, J. & Thierbach, G. ( 2002; ). The 27.8-kb R-plasmid pTET3 from Corynebacterium glutamicum encodes the aminoglycoside adenyltransferase gene cassette aadA9 and the regulated tetracycline efflux system Tet 33 flanked by active copies of the widespread insertion sequence IS6100. Plasmid 48, 117–129.[CrossRef]
    [Google Scholar]
  38. Tauch, A., Bischoff, N., Brune, I. & Kalinowski, J. ( 2003a; ). Insights into the genetic organization of the Corynebacterium diphtheriae erythromycin resistance plasmid pNG2 deduced from its complete nucleotide sequence. Plasmid 49, 63–74.[CrossRef]
    [Google Scholar]
  39. Tauch, A., Pühler, A., Kalinowski, J. & Thierbach, G. ( 2003b; ). Plasmids in Corynebacterium glutamicum and their molecular classification by comparative genomics. J Biotechnol 104, 27–40.[CrossRef]
    [Google Scholar]
  40. Tauch, A., Bischoff, N., Puhler, A. & Kalinowski, J. ( 2004; ). Comparative genomics identified two conserved DNA modules in a corynebacterial plasmid family present in clinical isolates of the opportunistic human pathogen Corynebacterium jeikeium. Plasmid 52, 102–118.[CrossRef]
    [Google Scholar]
  41. Tauch, A., Kaiser, O., Hain, T., Goesmann, A., Weisshaar, B., Albersmeier, A., Bekel, T., Bischoff, N., Brune, I. & other authors ( 2005; ). Complete genome sequence and analysis of the multiresistant nosocomial pathogen Corynebacterium jeikeium K411, a lipid-requiring bacterium of the human skin flora. J Bacteriol 187, 4671–4682.[CrossRef]
    [Google Scholar]
  42. Tsuchida, Y., Kimura, S., Suzuki, N., Inui, M. & Yukawa, H. ( 2009; ). Characterization of a new 2.4-kb plasmid of Corynebacterium casei and development of stable corynebacterial cloning vector. Appl Microbiol Biotechnol 81, 1107–1115.[CrossRef]
    [Google Scholar]
  43. Tsuchida, Y., Kimura, S., Suzuki, N., Inui, M. & Yukawa, H. ( 2010; ). Characterization of a 24-kb plasmid pCGR2 newly isolated from Corynebacterium glutamicum. Appl Microbiol Biotechnol 87, 1855–1866.[CrossRef]
    [Google Scholar]
  44. Venkova, T., Pátek, M. & Nešvera, J. ( 2001; ). Identification of a novel gene involved in stable maintenance of plasmid pGA1 from Corynebacterium glutamicum. Plasmid 46, 153–162.[CrossRef]
    [Google Scholar]
  45. Venkova-Canova, T., Pátek, M. & Nešvera, J. ( 2003; ). Control of rep gene expression in plasmid pGA1 from Corynebacterium glutamicum. J Bacteriol 185, 2402–2409.[CrossRef]
    [Google Scholar]
  46. Vertès, A. A., Inui, M., Kobayashi, M., Kurusu, Y. & Yukawa, H. ( 1993; ). Presence of mrr- and mcr-like restriction systems in coryneform bacteria. Res Microbiol 144, 181–185.[CrossRef]
    [Google Scholar]
  47. Williams, L. E., Detter, C., Barry, K., Lapidus, A. & Summers, A. O. ( 2006; ). Facile recovery of individual high-molecular-weight, low-copy-number natural plasmids for genomic sequencing. Appl Environ Microbiol 72, 4899–4906.[CrossRef]
    [Google Scholar]
  48. Yukawa, H., Omumasaba, C. A., Nonaka, H., Kós, P., Okai, N., Suzuki, N., Suda, M., Tsuge, Y., Watanabe, J. & other authors ( 2007; ). Comparative analysis of the Corynebacterium glutamicum group and complete genome sequence of strain R. Microbiology 153, 1042–1058.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.043745-0
Loading
/content/journal/micro/10.1099/mic.0.043745-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error