1887

Abstract

Among pathogenic strains of , the transcription factor has a pivotal role in the outcome of food-borne infections. This factor is activated by diverse stresses to provide general protection against multiple challenges, including those encountered during gastrointestinal passage. It also acts with the PrfA regulator to control virulence genes needed for entry into intestinal lumen cells. Environmental and nutritional signals modulate activity via a network that operates by the partner switching mechanism, in which protein interactions are controlled by serine phosphorylation. This network is well characterized in the related bacterium . A key difference in is the presence of only one input phosphatase, RsbU, instead of the two found in . Here, we aim to determine whether this sole phosphatase is required to convey physical, antibiotic and nutritional stress signals, or if additional pathways might exist. To that end, we constructed 10403S strains bearing single-copy, -dependent reporter fusions to determine the effects of an deletion under physiological conditions. All stresses tested, including acid, antibiotic, cold, ethanol, heat, osmotic and nutritional challenge, required RsbU to activate . This was of particular significance for cold stress activation, which occurs via a phosphatase-independent mechanism in . We also assayed the effects of the D80N substitution in the upstream RsbT regulator that activates RsbU. The mutant had a phenotype consistent with low and uninducible phosphatase activity, but nonetheless responded to nutritional stress. We infer that RsbU activity but not its induction is required for nutritional signalling, which would enter the network downstream from RsbU.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.041202-0
2010-09-01
2020-08-15
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/9/2660.html?itemId=/content/journal/micro/10.1099/mic.0.041202-0&mimeType=html&fmt=ahah

References

  1. Akbar S., Kang C. M., Gaidenko T. A., Price C. W.. 1997; Modulator protein RsbR regulates environmental signalling in the general stress pathway of Bacillus subtilis. Mol Microbiol24:567–578
    [Google Scholar]
  2. Becker L. A., Cetin M. S., Hutkins R. W., Benson A. K.. 1998; Identification of the gene encoding the alternative sigma factor σB from Listeria monocytogenes and its role in osmotolerance. J Bacteriol180:4547–4554
    [Google Scholar]
  3. Begley M., Hill C., Ross R. P.. 2006; Tolerance of Listeria monocytogenes to cell envelope-acting antimicrobial agents is dependent on SigB. Appl Environ Microbiol72:2231–2234
    [Google Scholar]
  4. Brigulla M., Hoffmann T., Krisp A., Völker A., Bremer E., Völker U.. 2003; Chill induction of the SigB-dependent general stress response in Bacillus subtilis and its contribution to low-temperature adaptation. J Bacteriol185:4305–4314
    [Google Scholar]
  5. Brody M. S., Stewart V., Price C. W.. 2009; Bypass suppression analysis maps the signalling pathway within a multidomain protein: the RsbP energy stress phosphatase 2C from Bacillus subtilis. Mol Microbiol72:1221–1234
    [Google Scholar]
  6. Bugg T. D., Walsh C. T.. 1992; Intracellular steps of bacterial cell wall peptidoglycan biosynthesis: enzymology, antibiotics, and antibiotic resistance. Nat Prod Rep9:199–215
    [Google Scholar]
  7. Camilli A., Tilney L. G., Portnoy D. A.. 1993; Dual roles of plcA in Listeria monocytogenes pathogenesis. Mol Microbiol8:143–157
    [Google Scholar]
  8. Cao M., Wang T., Ye R., Helmann J. D.. 2002; Antibiotics that inhibit cell wall biosynthesis induce expression of the Bacillus subtilis σW and σM regulons. Mol Microbiol45:1267–1276
    [Google Scholar]
  9. Chan Y. C., Boor K. J., Wiedmann M.. 2007; σB-dependent and σB-independent mechanisms contribute to transcription of Listeria monocytogenes cold stress genes during cold shock and cold growth. Appl Environ Microbiol73:6019–6029
    [Google Scholar]
  10. Chaturongakul S., Boor K. J.. 2004; RsbT and RsbV contribute to σB-dependent survival under environmental, energy, and intracellular stress conditions in Listeria monocytogenes. Appl Environ Microbiol70:5349–5356
    [Google Scholar]
  11. Chaturongakul S., Boor K. J.. 2006; σB activation under environmental and energy stress conditions in Listeria monocytogenes. Appl Environ Microbiol72:5197–5203
    [Google Scholar]
  12. Chaturongakul S., Raengpradub S., Wiedmann M., Boor K. J.. 2008; Modulation of stress and virulence in Listeria monocytogenes. Trends Microbiol16:388–396
    [Google Scholar]
  13. Csonka L. N.. 1989; Physiological and genetic responses of bacteria to osmotic stress. Microbiol Rev53:121–147
    [Google Scholar]
  14. Delumeau O., Lewis R. J., Yudkin M. D.. 2002; Protein–protein interactions that regulate the energy stress activation of σB in Bacillus subtilis. J Bacteriol184:5583–5589
    [Google Scholar]
  15. Delumeau O., Chen C. C., Murray J. W., Yudkin M. D., Lewis R. J.. 2006; High-molecular-weight complexes of RsbR and paralogues in the environmental signaling pathway of Bacillus subtilis. J Bacteriol188:7885–7892
    [Google Scholar]
  16. Dutta R., Inouye M.. 2000; GHKL, an emergent ATPase/kinase superfamily. Trends Biochem Sci25:24–28
    [Google Scholar]
  17. Eymann C., Hecker M.. 2001; Induction of σB-dependent general stress genes by amino acid starvation in a spo0H mutant of Bacillus subtilis. FEMS Microbiol Lett199:221–227
    [Google Scholar]
  18. Gaidenko T. A., Kim T. J., Weigel A. L., Brody M. S., Price C. W.. 2006; The blue-light receptor YtvA acts in the environmental stress signaling pathway of Bacillus subtilis. J Bacteriol188:6387–6395
    [Google Scholar]
  19. Garner M. R., Njaa B. L., Wiedmann M., Boor K. J.. 2006; Sigma B contributes to Listeria monocytogenes gastrointestinal infection but not to systemic spread in the guinea pig infection model. Infect Immun74:876–886
    [Google Scholar]
  20. Glaser P., Frangeul L., Buchrieser C., Rusniok C., Amend A., Baquero F., Berche P., Bloecker H., Brandt P.. other authors 2001; Comparative genomics of Listeria species. Science294:849–852
    [Google Scholar]
  21. Hain T., Hossain H., Chatterjee S. S., Machata S., Volk U., Wagner S., Brors B., Haas S., Kuenne C. T.. other authors 2008; Temporal transcriptomic analysis of the Listeria monocytogenes EGD-e σB regulon. BMC Microbiol8:20
    [Google Scholar]
  22. Harold F. M.. 1972; Conservation and transformation of energy by bacterial membranes. Bacteriol Rev36:172–230
    [Google Scholar]
  23. Hecker M., Pané-Farré J., Völker U.. 2007; SigB-dependent general stress response in Bacillus subtilis and related Gram-positive bacteria. Annu Rev Microbiol61:215–236
    [Google Scholar]
  24. Ho S. N., Hunt H. D., Horton R. M., Pullen J. K., Pease L. R.. 1989; Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene77:51–59
    [Google Scholar]
  25. Ho M. S., Carniol K., Losick R.. 2003; Evidence in support of a docking model for the release of the transcription factor σF from the antisigma factor SpoIIAB in Bacillus subtilis. J Biol Chem278:20898–20905
    [Google Scholar]
  26. Igoshin O. A., Brody M. S., Price C. W., Savageau M. A.. 2007; Distinctive topologies of partner-switching signaling networks correlate with their physiological roles. J Mol Biol369:1333–1352
    [Google Scholar]
  27. Kang C. M., Vijay K., Price C. W.. 1998; Serine kinase activity of a Bacillus subtilis switch protein is required to transduce environmental stress signals but not to activate its target PP2C phosphatase. Mol Microbiol30:189–196
    [Google Scholar]
  28. Kazmierczak M. J., Mithoe S. C., Boor K. J., Wiedmann M.. 2003; Listeria monocytogenes σB regulates stress response and virulence functions. J Bacteriol185:5722–5734
    [Google Scholar]
  29. Kim T. J., Gaidenko T. A., Price C. W.. 2004; A multicomponent protein complex mediates environmental stress signaling in Bacillus subtilis. J Mol Biol341:135–150
    [Google Scholar]
  30. Kim H. J., Mittal M., Sonenshein A. L.. 2006; CcpC-dependent regulation of citB and lmo0847 in Listeria monocytogenes. J Bacteriol188:179–190
    [Google Scholar]
  31. Lauer P., Chow M. Y., Loessner M. J., Portnoy D. A., Calendar R.. 2002; Construction, characterization, and use of two Listeria monocytogenes site-specific phage integration vectors. J Bacteriol184:4177–4186
    [Google Scholar]
  32. Losi A.. 2004; The bacterial counterparts of plant phototropins. Photochem Photobiol Sci3:566–574
    [Google Scholar]
  33. Marles-Wright J., Grant T., Delumeau O., van Duinen G., Firbank S. J., Lewis P. J., Murray J. W., Newman J. A., Quin M. B.. other authors 2008; Molecular architecture of the “stressosome,” a signal integration and transduction hub. Science322:92–96
    [Google Scholar]
  34. Mascher T., Margulis N. G., Wang T., Ye R. W., Helmann J. D.. 2003; Cell wall stress responses in Bacillus subtilis: the regulatory network of the bacitracin stimulon. Mol Microbiol50:1591–1604
    [Google Scholar]
  35. Miller J. H.. 1972; Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  36. Milohanic E., Glaser P., Coppée J. Y., Frangeul L., Vega Y., Vázquez-Boland J. A., Kunst F., Cossart P., Buchrieser C.. 2003; Transcriptome analysis of Listeria monocytogenes identifies three groups of genes differently regulated by PrfA. Mol Microbiol47:1613–1625
    [Google Scholar]
  37. Mota-Meira M., LaPointe G., Lacroix C., Lavoie M. C.. 2000; MICs of mutacin B-Ny266, Nisin A, vancomycin, and oxacillin against bacterial pathogens. Antimicrob Agents Chemother44:24–29
    [Google Scholar]
  38. Palmer M. E., Wiedmann M., Boor K. J.. 2009; σB and σL contribute to Listeria monocytogenes 10403S response to the antimicrobial peptides SdpC and nisin. Foodborne Pathog Dis6:1057–1065
    [Google Scholar]
  39. Pané-Farré J., Lewis R. J., Stülke J.. 2005; The RsbRST stress module in bacteria: a signalling system that may interact with different output modules. J Mol Microbiol Biotechnol9:65–76
    [Google Scholar]
  40. Portnoy D. A., Jacks P. S., Hinrichs D. J.. 1988; Role of hemolysin for the intracellular growth of Listeria monocytogenes. J Exp Med167:1459–1471
    [Google Scholar]
  41. Price C. W.. 2010; General stress response in Bacillus subtilis and related Gram positive bacteria. In Bacterial Stress Responses, 2nd edn. in press Edited by Storz G., Hengge R.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  42. Sambrook J., Fritsch E. F., Maniatis T.. 1989; Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  43. Shin J.-H., Kim J., Kim S.-M., Kim S., Lee J.-C., Ahn J.-M., Cho J.-Y.. 2010; σB-dependent protein induction in Listeria monocytogenes during vancomycin stress. FEMS Microbiol Lett308:94–100
    [Google Scholar]
  44. Simon R., Priefer U., Pühler A.. 1983; A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram negative bacteria. Nat Biotechnol1:784–791
    [Google Scholar]
  45. Sleator R. D., Watson D., Hill C., Gahan C. G.. 2009; The interaction between Listeria monocytogenes and the host gastrointestinal tract. Microbiology155:2463–2475
    [Google Scholar]
  46. Smith K., Youngman P.. 1992; Use of a new integrational vector to investigate compartment-specific expression of the Bacillus subtilis spoIIM gene. Biochimie74:705–711
    [Google Scholar]
  47. Toledo-Arana A., Dussurget O., Nikitas G., Sesto N., Guet-Revillet H., Balestrino D., Loh E., Gripenland J., Tiensuu T.. other authors 2009; The Listeria transcriptional landscape from saprophytism to virulence. Nature459:950–956
    [Google Scholar]
  48. Vijay K., Brody M. S., Fredlund E., Price C. W.. 2000; A PP2C phosphatase containing a PAS domain is required to convey signals of energy stress to the σB transcription factor of Bacillus subtilis. Mol Microbiol35:180–188
    [Google Scholar]
  49. Voelker U., Voelker A., Maul B., Hecker M., Dufour A., Haldenwang W. G.. 1995; Separate mechanisms activate σB of Bacillus subtilis in response to environmental and metabolic stresses. J Bacteriol177:3771–3780
    [Google Scholar]
  50. Wiedemann I., Breukink E., van Kraaij C., Kuipers O. P., Bierbaum G., de Kruijff B., Sahl H. G.. 2001; Specific binding of nisin to the peptidoglycan precursor lipid II combines pore formation and inhibition of cell wall biosynthesis for potent antibiotic activity. J Biol Chem276:1772–1779
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.041202-0
Loading
/content/journal/micro/10.1099/mic.0.041202-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error