- Volume 156, Issue 9, 2010
Volume 156, Issue 9, 2010
- Review
-
-
-
Genome-wide analysis and literature-based survey of lipoproteins in Pseudomonas aeruginosa
More LessPseudomonas aeruginosa is a Gram-negative opportunistic pathogen able to cause acute or chronic infections. Like all other Pseudomonas species, P. aeruginosa has a large genome, >6 Mb, encoding more than 5000 proteins. Many proteins are localized in membranes, among them lipoproteins, which can be found tethered to the inner or the outer membrane. Lipoproteins are translocated from the cytoplasm and their N-terminal signal peptide is cleaved by the signal peptidase II, which recognizes a specific sequence called the lipobox just before the first cysteine of the mature lipoprotein. A majority of lipoproteins are transported to the outer membrane via the LolCDEAB system, while those having an avoidance signal remain in the inner membrane. In Escherichia coli, the presence of an aspartate residue after the cysteine is sufficient to cause the lipoprotein to remain in the inner membrane, while in P. aeruginosa the situation is more complex and involves amino acids at position +3 and +4 after the cysteine. Previous studies indicated that there are 185 lipoproteins in P. aeruginosa, with a minority in the inner membrane. A reanalysis led to a reduction of this number to 175, while new retention signals could be predicted, increasing the percentage of inner-membrane lipoproteins to 20 %. About one-third (62 out of 175) of the lipoprotein genes are present in the 17 Pseudomonas genomes sequenced, meaning that these genes are part of the core genome of the genus. Lipoproteins can be classified into families, including those outer-membrane proteins having a structural role or involved in efflux of antibiotics. Comparison of various microarray data indicates that exposure to epithelial cells or some antibiotics, or conversion to mucoidy, has a major influence on the expression of lipoprotein genes in P. aeruginosa.
-
-
- Lecture
-
-
-
Assembly of outer-membrane proteins in bacteria and mitochondria
More LessThe cell envelope of Gram-negative bacteria consists of two membranes separated by the periplasm. In contrast with most integral membrane proteins, which span the membrane in the form of hydrophobic α-helices, integral outer-membrane proteins (OMPs) form β-barrels. Similar β-barrel proteins are found in the outer membranes of mitochondria and chloroplasts, probably reflecting the endosymbiont origin of these eukaryotic cell organelles. How these β-barrel proteins are assembled into the outer membrane has remained enigmatic for a long time. In recent years, much progress has been reached in this field by the identification of the components of the OMP assembly machinery. The central component of this machinery, called Omp85 or BamA, is an essential and highly conserved bacterial protein that recognizes a signature sequence at the C terminus of its substrate OMPs. A homologue of this protein is also found in mitochondria, where it is required for the assembly of β-barrel proteins into the outer membrane as well. Although accessory components of the machineries are different between bacteria and mitochondria, a mitochondrial β-barrel OMP can be assembled into the bacterial outer membrane and, vice versa, bacterial OMPs expressed in yeast are assembled into the mitochondrial outer membrane. These observations indicate that the basic mechanism of OMP assembly is evolutionarily highly conserved.
-
-
- Cell And Molecular Biology Of Microbes
-
-
-
Selenite-induced cell death in Saccharomyces cerevisiae: protective role of glutaredoxins
More LessUnlike in higher organisms, selenium is not essential for growth in Saccharomyces cerevisiae. In this species, it causes toxic effects at high concentrations. In the present study, we show that when supplied as selenite to yeast cultures growing under fermentative metabolism, its effects can be dissected into two death phases. From the time of initial treatment, it causes loss of membrane integrity and genotoxicity. Both effects occur at higher levels in mutants lacking Grx1p and Grx2p than in wild-type cells, and are reversed by expression of a cytosolic version of the membrane-associated Grx7p glutaredoxin. Grx7p can also rescue the high levels of protein carbonylation damage that occur in selenite-treated cultures of the grx1 grx2 mutant. After longer incubation times, selenite causes abnormal nuclear morphology and the appearance of TUNEL-positive cells, which are considered apoptotic markers in yeast cells. This effect is independent of Grx1p and Grx2p. Therefore, the protective role of the two glutaredoxins is restricted to the initial stages of selenite treatment. Lack of Yca1p metacaspase or of a functional mitochondrial electron transport chain only moderately diminishes apoptotic-like death by selenite. In contrast, selenite-induced apoptosis is dependent on the apoptosis-inducing factor Aif1p. In the absence of the latter, intracellular protein carbonylation is reduced after prolonged selenite treatment, supporting the supposition that part of the oxidative damage is contributed by apoptotic cells.
-
-
-
-
The ham-5, rcm-1 and rco-1 genes regulate hyphal fusion in Neurospora crassa
Mutants of Neurospora crassa unable to participate in vegetative hyphal fusion (anastomosis) were isolated and characterized. From this analysis, three genes, rcm-1, rco-1 and ham-5, were identified and shown to be required for hyphal fusion. The rcm-1 and rco-1 genes are homologues of the Saccharomyces cerevisiae SSN6 and TUP1 genes, which encode a dimeric transcription factor in yeast. We demonstrate that in N. crassa the rcm-1 and rco-1 genes are required for hyphal fusion and normal hyphal morphology, and influence both asexual and sexual development. The ham-5 gene encodes a 1686 amino acid protein with two putative WD40 domains, which might participate in protein–protein interactions. ham-5 deletion mutants had a reduced rate of hyphal extension and altered hyphal morphology, and were unable to produce the conidial anastomosis tubes that are required for hyphal fusion during colony initiation.
-
-
-
Involvement of hydrogenases in the formation of highly catalytic Pd(0) nanoparticles by bioreduction of Pd(II) using Escherichia coli mutant strains
More LessEscherichia coli produces at least three [NiFe] hydrogenases (Hyd-1, Hyd-2 and Hyd-3). Hyd-1 and Hyd-2 are membrane-bound respiratory isoenzymes with their catalytic subunits exposed to the periplasmic side of the membrane. Hyd-3 is part of the cytoplasmically oriented formate hydrogenlyase complex. In this work the involvement of each of these hydrogenases in Pd(II) reduction under acidic (pH 2.4) conditions was studied. While all three hydrogenases could contribute to Pd(II) reduction, the presence of either periplasmic hydrogenase (Hyd-1 or Hyd-2) was required to observe Pd(II) reduction rates comparable to the parent strain. An E. coli mutant strain genetically deprived of all hydrogenase activity showed negligible Pd(II) reduction. Electron microscopy suggested that the location of the resulting Pd(0) deposits was as expected from the subcellular localization of the particular hydrogenase involved in the reduction process. Membrane separation experiments established that Pd(II) reductase activity is membrane-bound and that hydrogenases are required to initiate Pd(II) reduction. The catalytic activity of the resulting Pd(0) nanoparticles in the reduction of Cr(VI) to Cr(III) varied according to the E. coli mutant strain used for the initial bioreduction of Pd(II). Optimum Cr(VI) reduction, comparable to that observed with a commercial Pd catalyst, was observed when the bio-Pd(0) catalytic particles were prepared from a strain containing an active Hyd-1. The results are discussed in the context of economic production of novel nanometallic catalysts.
-
-
-
Autoregulation of hpdR and its effect on CDA biosynthesis in Streptomyces coelicolor
More LessHpdR, an IclR-family regulator in Streptomyces coelicolor, is a substrate-dependent repressor for the tyrosine catabolic gene hppD. In this study, S1 nuclease protection assays revealed that hpdR is subject to a negative autoregulation. Purified HpdR showed specific DNA-binding activity for the promoter region of hpdR, indicating that the autoregulation of hpdR is performed directly. The disruption of hpdR led to reduced production of CDA by S. coelicolor J1501, suggesting a positive effect of hpdR on CDA biosynthesis. Electrophoretic mobility shift assays showed that HpdR specifically bound to the promoter region of hmaS (SCO3229 in the CDA gene cluster), encoding 4-hydroxymandelic acid synthase. Disruption of hmaS in J1501 abolished CDA production. It is possible that hpdR regulates CDA biosynthesis by controlling the transcription of hmaS.
-
-
-
Differential PilA pilus assembly by a hospital-acquired and a community-derived Enterococcus faecium isolate
Pili are hair-like structures protruding from the cell envelope of bacterial cells. Here, we describe the conditional and differential display of PilA-type pili, and PilE and PilF proteins, encoded from pilin gene cluster 1 at the surface of a hospital-acquired Enterococcus faecium bloodstream isolate (E1165) and a community-derived stool isolate (E1039), at two different temperatures. Both strains have virtually identical pilA gene clusters, as determined by sequencing. Western blotting and transmission immunoelectron microscopy revealed that PilA and PilF assembled into high-molecular-mass pilus-like structures at 37 °C in the E1165 strain, whereas PilE was not produced at either of the temperatures used; at 21 °C, PilA and PilF were cell-wall-anchored proteins. In contrast, in strain E1039, PilA, PilE and PilF pilin proteins were found to be displayed as cell-wall-anchored proteins at 37 °C only, and they were not associated with pilus-like structures. The discrepancy in pilus assembly between E1039 and E1165 cannot be explained by differences in expression of the genes encoding the predicted sortases in the pilA gene cluster, as these had similar expression levels in both strains at 21 and 37 °C. Double-labelling electron microscopy revealed that PilA formed the pilus backbone in E1165, and PilF the minor subunit which was distributed along the PilA pilus shaft and positioned at the tip; however, it was deposited as a cell-wall-anchored protein in a pilA isogenic mutant. The differential deposition of surface proteins from pilin gene cluster 1 and differences in pilus assembly in the two strains suggest a complex post-transcriptional regulatory mechanism of pilus biogenesis in E. faecium.
-
-
-
Physical and antibiotic stresses require activation of the RsbU phosphatase to induce the general stress response in Listeria monocytogenes
More LessAmong pathogenic strains of Listeria monocytogenes, the σ B transcription factor has a pivotal role in the outcome of food-borne infections. This factor is activated by diverse stresses to provide general protection against multiple challenges, including those encountered during gastrointestinal passage. It also acts with the PrfA regulator to control virulence genes needed for entry into intestinal lumen cells. Environmental and nutritional signals modulate σ B activity via a network that operates by the partner switching mechanism, in which protein interactions are controlled by serine phosphorylation. This network is well characterized in the related bacterium Bacillus subtilis. A key difference in Listeria is the presence of only one input phosphatase, RsbU, instead of the two found in B. subtilis. Here, we aim to determine whether this sole phosphatase is required to convey physical, antibiotic and nutritional stress signals, or if additional pathways might exist. To that end, we constructed L. monocytogenes 10403S strains bearing single-copy, σ B-dependent opuCA–lacZ reporter fusions to determine the effects of an rsbU deletion under physiological conditions. All stresses tested, including acid, antibiotic, cold, ethanol, heat, osmotic and nutritional challenge, required RsbU to activate σ B. This was of particular significance for cold stress activation, which occurs via a phosphatase-independent mechanism in B. subtilis. We also assayed the effects of the D80N substitution in the upstream RsbT regulator that activates RsbU. The mutant had a phenotype consistent with low and uninducible phosphatase activity, but nonetheless responded to nutritional stress. We infer that RsbU activity but not its induction is required for nutritional signalling, which would enter the network downstream from RsbU.
-
-
-
Agrobacterium tumefaciens ExoR represses succinoglycan biosynthesis and is required for biofilm formation and motility
More LessThe ubiquitous plant pathogen Agrobacterium tumefaciens attaches efficiently to plant tissues and abiotic surfaces and can form complex biofilms. A genetic screen for mutants unable to form biofilms on PVC identified disruptions in a homologue of the exoR gene. ExoR is a predicted periplasmic protein, originally identified in Sinorhizobium meliloti, but widely conserved among alphaproteobacteria. Disruptions in the A. tumefaciens exoR gene result in severely compromised attachment to abiotic surfaces under static and flow conditions, and to plant tissues. These mutants are hypermucoid due to elevated production of the exopolysaccharide succinoglycan, via derepression of the exo genes that direct succinoglycan synthesis. In addition, exoR mutants have lost flagellar motility, do not synthesize detectable flagellin and are diminished in flagellar gene expression. The attachment deficiency is, however, complex and not solely attributable to succinoglycan overproduction or motility disruption. A. tumefaciens ExoR can function independently of the ChvG–ChvI two component system, implicated in ExoR-dependent regulation in S. meliloti. Mutations that suppress the exoR motility defect suggest a branched regulatory pathway controlling succinoglycan synthesis, motility and biofilm formation.
-
-
-
Identification of a bacterial di-haem cytochrome c peroxidase from Methylomicrobium album BG8
More LessThe nucleotide sequence of an open reading frame (corB) downstream of the copper-repressible CorA-encoding gene of the methanotrophic bacterium Methylomicrobium album BG8 was obtained by restriction enzyme digestion and inverse PCR. The amino acid sequence deduced from this gene showed significant sequence similarity to the surface-associated di-haem cytochrome c peroxidase (SACCP) previously isolated from Methylococcus capsulatus (Bath), including both c-type haem-binding motifs. Homology analysis placed this protein, phylogenetically, within the subfamily containing the M. capsulatus SACCP of the bacterial di-haem cytochrome c peroxidase (BCCP) family of proteins. Immunospecific recognition confirmed synthesis of the M. album CorB as a protein non-covalently associated with the outer membrane and exposed to the periplasm. corB expression is regulated by the availability of copper ions during growth and the protein is most abundant in M. album when grown at a low copper-to-biomass ratio, indicating an important physiological role of CorB under these growth conditions. corB was co-transcribed with the gene encoding CorA, constituting a copper-responding operon, which appears to be under the control of a σ 54-dependent promoter. M. album CorB is the second isolated member of the recently described subfamily of the BCCP family of proteins. So far, these proteins have only been described in methanotrophic bacteria.
-
-
-
Essentiality and functional analysis of type I and type III pantothenate kinases of Mycobacterium tuberculosis
Pantothenate kinase, an essential enzyme in bacteria and eukaryotes, is involved in catalysing the first step of conversion of pantothenate to coenzyme A (CoA). Three isoforms (type I, II and III) of this enzyme have been reported from various organisms, which can be differentiated from each other on the basis of their biochemical and structural characteristics. Though most bacteria carry only one of the isoforms of pantothenate kinases, some of them possess two isoforms. The physiological relevance of the presence of two types of isozymes in a single organism is not clear. Mycobacterium tuberculosis, an intracellular pathogen, possesses two isoforms of pantothenate kinases (CoaA and CoaX) belonging to type I and III. In order to determine which pantothenate kinase is essential in mycobacteria, we performed gene inactivation of coaA and coaX of M. tuberculosis individually. It was found that coaA could only be inactivated in the presence of an extra copy of the gene, while coaX could be inactivated in the wild-type cells, proving that CoaA is the essential pantothenate kinase in M. tuberculosis. Additionally, the coaA gene of M. tuberculosis was able to complement a temperature-sensitive coaA mutant of Escherichia coli at a non-permissive temperature while coaX could not. The coaX deletion mutant showed no growth defects in vitro, in macrophages or in mice. Taken together, our data suggest that CoaX, which is essential in Bacillus anthracis and thus had been suggested to be a drug target in this organism, might not be a valid target in M. tuberculosis. We have established that the type I isoform, CoaA, is the essential pantothenate kinase in M. tuberculosis and thus can be explored as a drug target.
-
- Environmental And Evolutionary Microbiology
-
-
-
Internalization of a thiazole-modified peptide in Sinorhizobium meliloti occurs by BacA-dependent and -independent mechanisms
BacA proteins play key roles in the chronic intracellular infections of Sinorhizobium meliloti, Brucella abortus and Mycobacterium tuberculosis within their respective hosts. S. meliloti, B. abortus and M. tuberculosis BacA-deficient mutants have increased resistance to the thiazole-modified peptide bleomycin. BacA has been previously hypothesized, but not experimentally verified, to be involved in bleomycin uptake. In this paper, we show that a BacA-dependent mechanism is the major route of bleomycin internalization in S. meliloti. We also determined that the B. abortus and S. meliloti BacA proteins are functional homologues and that the B. abortus BacA protein is involved in the uptake of both bleomycin and proline-rich peptides. Our findings also provide evidence that there is a second, BacA-independent minor mechanism for bleomycin internalization in S. meliloti. We determined that the BacA-dependent and -independent mechanisms of bleomycin uptake are energy-dependent, consistent with both mechanisms of bleomycin uptake involving transport systems.
-
-
- Genes And Genomes
-
-
-
Comparative expression analysis of rpf-like genes of Mycobacterium tuberculosis H37Rv under different physiological stress and growth conditions
More LessMycobacterium tuberculosis H37Rv possesses five resuscitation-promoting factors, RpfA–E, which are required for the resuscitation of dormancy in mycobacteria induced by prolonged incubation of the culture in stationary phase. This study explores the transcriptional profile of all the rpf-like genes of M. tuberculosis H37Rv in the exponential phase, stationary phase, non-culturable phase and Rpf-mediated resuscitation phase. The relative expression was also monitored under acid stress, nutrient starvation and low-oxygen (hypoxia) conditions by real-time quantitative PCR. We show differential relative expression of the rpf genes during different stages of growth and under stress. During early resuscitation, all rpf genes were expressed with maximal expression ratios for rpfA and rpfD. rpfC was consistently expressed during all stages of growth and nutrient starvation. Acid stress induced higher relative expression of rpfD and rpfE and hypoxia of rpfC and rpfE. These results therefore provide further evidence that the rpf genes perform distinct roles during cell growth and cell survival under different physiological stresses, and are consistent with the rpf-like genes being differentially regulated.
-
-
-
-
The tra locus of streptomycete plasmid pIJ101 mediates efficient transfer of a circular but not a linear version of the same replicon
More LessConjugal transfer of circular plasmids in Streptomyces involves a unique mechanism employing few plasmid-encoded loci and the transfer of double-stranded DNA by an as yet uncharacterized intercellular route. Efficient transfer of the circular streptomycete plasmid pIJ101 requires only two plasmid loci: the pIJ101 tra gene, and as a cis-acting function known as clt. Here, we compared the ability of the pIJ101 transfer apparatus to promote conjugal transfer of circular versus linear versions of the same replicon. While the pIJ101 tra locus readily transferred the circular form of the replicon, the linear version was transferred orders of magnitude less efficiently and all plasmids isolated from the transconjugants were circular, regardless of their original configuration in the donor. Additionally, relatively rare circularization of linear plasmids was detectable in the donor cells, which is consistent with the notion that this event was a prerequisite for transfer by TraB(pIJ101). Linear versions of this same replicon did transfer efficiently, in that configuration, from strains containing the conjugative linear plasmid SLP2. Our data indicate that functions necessary and sufficient for transfer of circular DNA were insufficient for transfer of a related linear DNA molecule. The results here suggest that the conjugation mechanisms of linear versus circular DNA in Streptomyces spp. are inherently different and/or that efficient transfer of linear DNA requires additional components.
-
-
-
Analysis of Yersinia enterocolitica invasin expression in vitro and in vivo using a novel luxCDABE reporter system
More LessA novel luxCDABE plasmid for the analysis of promoter elements by site-specific integration into the genome of Yersinia enterocolitica was constructed. The versatility of this reporter system was demonstrated by comparing the activity of the inv promoter in the Y. enterocolitica high-pathogenic serotype O : 8 (strain WA-314) with that of the low pathogenic serotype O : 9 (strain Y127). The luciferase activity of a transcriptional fusion between the inv promoter of serotype O : 8 and luxCDABE was about fourfold lower than the activity of the respective O : 9 promoter. This correlated with lower invasin production by Y. enterocolitica serotype O : 8 compared with serotypes O : 9, O : 3 and O : 5,27. However, Y. enterocolitica of serotype O : 8 revealed higher invasiveness than serotype O : 9. When both invasins were expressed in trans at similar levels in the Y. enterocolitica O : 8 Δinv background strain, cell invasion assays showed a slightly higher invasiveness of the strain producing Inv(O : 8) than the strain producing Inv(O : 9). We provide experimental evidence that this might be due to a higher binding capacity of Inv(O : 8) for cells expressing β1 integrins compared with Inv(O:9). The Y. enterocolitica O : 8 strain harbouring the P inv (O : 8) : : luxCDABE fusion was then successfully used to follow inv expression in a mouse infection model. These experiments showed for the first time that the inv promoter is active in infected living mice, especially in Peyer's patches of the ileum, the caecal lymph follicle, and the lymph nodes, liver and spleen. The production of invasin in the spleen was demonstrated by Western blot analysis. In conclusion, the presented reporter system enables stable genomic integration of the luxCDABE operon into the chromosome of Yersinia, facilitates in vitro quantification of promoter activities under different bacterial growth conditions, and enables detection of promoter activities in a mouse model.
-
-
-
Global transcriptomics analysis of the Desulfovibrio vulgaris change from syntrophic growth with Methanosarcina barkeri to sulfidogenic metabolism
Desulfovibrio vulgaris is a metabolically flexible micro-organism. It can use sulfate as an electron acceptor to catabolize a variety of substrates, or in the absence of sulfate can utilize organic acids and alcohols by forming a syntrophic association with a hydrogen-scavenging partner to relieve inhibition by hydrogen. These alternative metabolic types increase the chance of survival for D. vulgaris in environments where one of the potential external electron acceptors becomes depleted. In this work, whole-genome D. vulgaris microarrays were used to determine relative transcript levels as D. vulgaris shifted its metabolism from syntrophic in a lactate-oxidizing dual-culture with Methanosarcina barkeri to a sulfidogenic metabolism. Syntrophic dual-cultures were grown in two independent chemostats and perturbation was introduced after six volume changes with the addition of sulfate. The results showed that 132 genes were differentially expressed in D. vulgaris 2 h after addition of sulfate. Functional analyses suggested that genes involved in cell envelope and energy metabolism were the most regulated when comparing syntrophic and sulfidogenic metabolism. Upregulation was observed for genes encoding ATPase and the membrane-integrated energy-conserving hydrogenase (Ech) when cells shifted to a sulfidogenic metabolism. A five-gene cluster encoding several lipoproteins and membrane-bound proteins was downregulated when cells were shifted to a sulfidogenic metabolism. Interestingly, this gene cluster has orthologues found only in another syntrophic bacterium, Syntrophobacter fumaroxidans, and four recently sequenced Desulfovibrio strains. This study also identified several novel c-type cytochrome-encoding genes, which may be involved in the sulfidogenic metabolism.
-
- Microbial Pathogenicity
-
-
-
Role of Vibrio polysaccharide (vps) genes in VPS production, biofilm formation and Vibrio cholerae pathogenesis
More LessBiofilm formation enhances the survival and persistence of the facultative human pathogen Vibrio cholerae in natural ecosystems and its transmission during seasonal cholera outbreaks. A major component of the V. cholerae biofilm matrix is the Vibrio polysaccharide (VPS), which is essential for development of three-dimensional biofilm structures. The vps genes are clustered in two regions, the vps-I cluster (vpsU, vpsA–K, VC0916–27) and the vps-II cluster (vpsL–Q, VC0934–39), separated by an intergenic region containing the rbm gene cluster that encodes biofilm matrix proteins. In-frame deletions of the vps clusters and genes encoding matrix proteins drastically altered biofilm formation phenotypes. To determine which genes within the vps gene clusters are required for biofilm formation and VPS synthesis, we generated in-frame deletion mutants for all the vps genes. Many of these mutants exhibited reduced capacity to produce VPS and biofilms. Infant mouse colonization assays revealed that mutants lacking either vps clusters or rbmA (encoding secreted matrix protein RbmA) exhibited a defect in intestinal colonization compared to the wild-type. Understanding the roles of the various vps gene products will aid in the biochemical characterization of the VPS biosynthetic pathway and elucidate how vps gene products contribute to VPS biosynthesis, biofilm formation and virulence in V. cholerae.
-
-
-
-
Salmonella enterica subspecies enterica serovar Enteritidis Salmonella pathogenicity island 2 type III secretion system: role in intestinal colonization of chickens and systemic spread
Salmonella enterica subspecies enterica serovar Enteritidis (S. Enteritidis) has been identified as a significant cause of salmonellosis in humans. Salmonella pathogenicity islands 1 and 2 (SPI-1 and SPI-2) each encode a specialized type III secretion system (T3SS) that enables Salmonella to manipulate host cells at various stages of the invasion/infection process. For the purposes of our studies we used a chicken isolate of S. Enteritidis (Sal18). In one study, we orally co-challenged 35-day-old specific pathogen-free (SPF) chickens with two bacterial strains per group. The control group received two versions of the wild-type strain Sal18: Sal18 attTn7 : : tet and Sal18 attTn7 : : cat, while the other two groups received the wild-type strain (Sal18 attTn7 : : tet) and one of two mutant strains. From this study, we concluded that S. Enteritidis strains deficient in the SPI-1 and SPI-2 systems were outcompeted by the wild-type strain. In a second study, groups of SPF chickens were challenged at 1 week of age with four different strains: the wild-type strain, and three other strains lacking either one or both of the SPI-1 and SPI-2 regions. On days 1 and 2 post-challenge, we observed a reduced systemic spread of the SPI-2 mutants, but by day 3, the systemic distribution levels of the mutants matched that of the wild-type strain. Based on these two studies, we conclude that the S. Enteritidis SPI-2 T3SS facilitates invasion and systemic spread in chickens, although alternative mechanisms for these processes appear to exist.
-
-
-
LAP, an alcohol acetaldehyde dehydrogenase enzyme in Listeria, promotes bacterial adhesion to enterocyte-like Caco-2 cells only in pathogenic species
Listeria adhesion protein (LAP), an alcohol acetaldehyde dehydrogenase (lmo1634), interacts with host-cell receptor Hsp60 to promote bacterial adhesion during the intestinal phase of Listeria monocytogenes infection. The LAP homologue is present in pathogens (L. monocytogenes, L. ivanovii) and non-pathogens (L. innocua, L. welshimeri, L. seeligeri); however, its role in non-pathogens is unknown. Sequence analysis revealed 98 % amino acid similarity in LAP from all Listeria species. The N-terminus contains acetaldehyde dehydrogenase (ALDH) and the C-terminus an alcohol dehydrogenase (ADH). Recombinant LAP from L. monocytogenes, L. ivanovii, L. innocua and L. welshimeri exhibited ALDH and ADH activities, and displayed strong binding affinity (K D 2–31 nM) towards Hsp60. Flow cytometry, ELISA and immunoelectron microscopy revealed more surface-associated LAP in pathogens than non-pathogens. Pathogens exhibited significantly higher adhesion (P<0.05) to Caco-2 cells than non-pathogens; however, pretreatment of bacteria with Hsp60 caused 47–92 % reduction in adhesion only in pathogens. These data suggest that biochemical properties of LAP from pathogenic Listeria are similar to those of the protein from non-pathogens in many respects, such as substrate specificity, immunogenicity, and binding affinity to Hsp60. However, protein fractionation analysis of extracts from pathogenic and non-pathogenic Listeria species revealed that LAP was greatly reduced in intracellular and cell-surface protein fractions, and undetectable in the extracellular milieu of non-pathogens even though the lap transcript levels were similar for both. Furthermore, a LAP preparation from L. monocytogenes restored adhesion in a lap mutant (KB208) of L. monocytogenes but not in L. innocua, indicating possible lack of surface reassociation of LAP molecules in this bacterium. Taken together, these data suggest that LAP expression level, cell-surface localization, secretion and reassociation are responsible for LAP-mediated pathogenicity and possibly evolved to adapt to a parasitic life cycle in the host.
-
-
-
Mutagenesis of the Rns regulator of enterotoxigenic Escherichia coli reveals roles for a linker sequence and two helix–turn–helix motifs
More LessThe pathogenesis of diarrhoeal disease due to human enterotoxigenic Escherichia coli absolutely requires the expression of fimbriae. The expression of CS1 fimbriae is positively regulated by the AraC-like protein Rns. AraC-like proteins are DNA-binding proteins that typically contain two helix–turn–helix (HTH) motifs. A program of pentapeptide insertion mutagenesis of the Rns protein was performed, and this revealed that both HTH motifs are required by Rns to positively regulate CS1 fimbrial gene expression. Intriguingly, a pentapeptide insertion after amino acid C102 reduced the ability of Rns to transactivate CS1 fimbrial expression. The structure of Rns in this vicinity (NACRS) was predicted to be disordered and thus might act as a flexible linker. This hypothesis was confirmed by deletion of this amino acid sequence from the Rns protein; a truncated protein that lacked this sequence was no longer functional. Strikingly, this sequence could be functionally substituted in vivo and in vitro by a flexible seven amino acid sequence from another E. coli AraC-like protein RhaS. Our data indicate that HTH motifs and a flexible sequence are required by Rns for maximal activation of fimbrial gene expression.
-
Volumes and issues
-
Volume 171 (2025)
-
Volume 170 (2024)
-
Volume 169 (2023)
-
Volume 168 (2022)
-
Volume 167 (2021)
-
Volume 166 (2020)
-
Volume 165 (2019)
-
Volume 164 (2018)
-
Volume 163 (2017)
-
Volume 162 (2016)
-
Volume 161 (2015)
-
Volume 160 (2014)
-
Volume 159 (2013)
-
Volume 158 (2012)
-
Volume 157 (2011)
-
Volume 156 (2010)
-
Volume 155 (2009)
-
Volume 154 (2008)
-
Volume 153 (2007)
-
Volume 152 (2006)
-
Volume 151 (2005)
-
Volume 150 (2004)
-
Volume 149 (2003)
-
Volume 148 (2002)
-
Volume 147 (2001)
-
Volume 146 (2000)
-
Volume 145 (1999)
-
Volume 144 (1998)
-
Volume 143 (1997)
-
Volume 142 (1996)
-
Volume 141 (1995)
-
Volume 140 (1994)
-
Volume 139 (1993)
-
Volume 138 (1992)
-
Volume 137 (1991)
-
Volume 136 (1990)
-
Volume 135 (1989)
-
Volume 134 (1988)
-
Volume 133 (1987)
-
Volume 132 (1986)
-
Volume 131 (1985)
-
Volume 130 (1984)
-
Volume 129 (1983)
-
Volume 128 (1982)
-
Volume 127 (1981)
-
Volume 126 (1981)
-
Volume 125 (1981)
-
Volume 124 (1981)
-
Volume 123 (1981)
-
Volume 122 (1981)
-
Volume 121 (1980)
-
Volume 120 (1980)
-
Volume 119 (1980)
-
Volume 118 (1980)
-
Volume 117 (1980)
-
Volume 116 (1980)
-
Volume 115 (1979)
-
Volume 114 (1979)
-
Volume 113 (1979)
-
Volume 112 (1979)
-
Volume 111 (1979)
-
Volume 110 (1979)
-
Volume 109 (1978)
-
Volume 108 (1978)
-
Volume 107 (1978)
-
Volume 106 (1978)
-
Volume 105 (1978)
-
Volume 104 (1978)
-
Volume 103 (1977)
-
Volume 102 (1977)
-
Volume 101 (1977)
-
Volume 100 (1977)
-
Volume 99 (1977)
-
Volume 98 (1977)
-
Volume 97 (1976)
-
Volume 96 (1976)
-
Volume 95 (1976)
-
Volume 94 (1976)
-
Volume 93 (1976)
-
Volume 92 (1976)
-
Volume 91 (1975)
-
Volume 90 (1975)
-
Volume 89 (1975)
-
Volume 88 (1975)
-
Volume 87 (1975)
-
Volume 86 (1975)
-
Volume 85 (1974)
-
Volume 84 (1974)
-
Volume 83 (1974)
-
Volume 82 (1974)
-
Volume 81 (1974)
-
Volume 80 (1974)
-
Volume 79 (1973)
-
Volume 78 (1973)
-
Volume 77 (1973)
-
Volume 76 (1973)
-
Volume 75 (1973)
-
Volume 74 (1973)
-
Volume 73 (1972)
-
Volume 72 (1972)
-
Volume 71 (1972)
-
Volume 70 (1972)
-
Volume 69 (1971)
-
Volume 68 (1971)
-
Volume 67 (1971)
-
Volume 66 (1971)
-
Volume 65 (1971)
-
Volume 64 (1970)
-
Volume 63 (1970)
-
Volume 62 (1970)
-
Volume 61 (1970)
-
Volume 60 (1970)
-
Volume 59 (1969)
-
Volume 58 (1969)
-
Volume 57 (1969)
-
Volume 56 (1969)
-
Volume 55 (1969)
-
Volume 54 (1968)
-
Volume 53 (1968)
-
Volume 52 (1968)
-
Volume 51 (1968)
-
Volume 50 (1968)
-
Volume 49 (1967)
-
Volume 48 (1967)
-
Volume 47 (1967)
-
Volume 46 (1967)
-
Volume 45 (1966)
-
Volume 44 (1966)
-
Volume 43 (1966)
-
Volume 42 (1966)
-
Volume 41 (1965)
-
Volume 40 (1965)
-
Volume 39 (1965)
-
Volume 38 (1965)
-
Volume 37 (1964)
-
Volume 36 (1964)
-
Volume 35 (1964)
-
Volume 34 (1964)
-
Volume 33 (1963)
-
Volume 32 (1963)
-
Volume 31 (1963)
-
Volume 30 (1963)
-
Volume 29 (1962)
-
Volume 28 (1962)
-
Volume 27 (1962)
-
Volume 26 (1961)
-
Volume 25 (1961)
-
Volume 24 (1961)
-
Volume 23 (1960)
-
Volume 22 (1960)
-
Volume 21 (1959)
-
Volume 20 (1959)
-
Volume 19 (1958)
-
Volume 18 (1958)
-
Volume 17 (1957)
-
Volume 16 (1957)
-
Volume 15 (1956)
-
Volume 14 (1956)
-
Volume 13 (1955)
-
Volume 12 (1955)
-
Volume 11 (1954)
-
Volume 10 (1954)
-
Volume 9 (1953)
-
Volume 8 (1953)
-
Volume 7 (1952)
-
Volume 6 (1952)
-
Volume 5 (1951)
-
Volume 4 (1950)
-
Volume 3 (1949)
-
Volume 2 (1948)
-
Volume 1 (1947)