1887

Abstract

serine/threonine protein kinases (STPKs) are key regulators of growth and metabolism; however, evidence for their roles in virulence is limited. In a preliminary screen based on comparative expression between strains H37Rv and H37Ra, six STPK genes, , , , , and , showed higher expression in H37Rv. In the second screen, STPK expression was analysed in H37Rv-infected human macrophages. Interestingly, significant expression of was detected only at 18 h post-infection, suggesting its involvement in early infection events. We have investigated the roles of PknK and . PknK levels were induced under stationary phase and deletion of resulted in increased resistance of the mutant to acidic pH, hypoxia, oxidative and stationary-phase stresses . These results, together with the increased survival of the Δ strain during persistent infection in mice, reveal a role for PknK in adaptive mechanisms that slow the growth of mycobacteria. A novel finding of this study was the inhibition of growth of Δ strain during acute infection in mice that correlated with the significant upregulation of tumour necrosis factor as well as the simultaneous downregulation of interleukin-12p40, interferon- and induced nitric oxide synthase transcripts. Finally, we provide evidence for the localization of PknK during infection and discuss its implications in pathogenesis.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.040675-0
2010-09-01
2019-09-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/9/2829.html?itemId=/content/journal/micro/10.1099/mic.0.040675-0&mimeType=html&fmt=ahah

References

  1. Av-Gay, Y. & Everett, M. ( 2000; ). The eukaryotic-like Ser/Thr protein kinases of Mycobacterium tuberculosis. Trends Microbiol 8, 238–244.[CrossRef]
    [Google Scholar]
  2. Av-Gay, Y., Jamil, S. & Drews, S. J. ( 1999; ). Expression and characterization of the Mycobacterium tuberculosis serine/threonine protein kinase PknB. Infect Immun 67, 5676–5682.
    [Google Scholar]
  3. Bach, H., Wong, D. & Av-Gay, Y. ( 2009; ). Mycobacterium tuberculosis PtkA is a novel protein tyrosine kinase whose substrate is PtpA. Biochem J 420, 155–160.[CrossRef]
    [Google Scholar]
  4. Bardarov, S., Bardarov, S., Jr, Pavelka, M. S., Jr, Sambandamurthy, V., Larsen, M., Tufariello, J., Chan, J., Hatfull, G. & Jacobs, W. R., Jr ( 2002; ). Specialized transduction: an efficient method for generating marked and unmarked targeted gene disruptions in Mycobacterium tuberculosis, M. bovis BCG and M. smegmatis. Microbiology 148, 3007–3017.
    [Google Scholar]
  5. Beltan, E., Horgen, L. & Rastogi, N. ( 2000; ). Secretion of cytokines by human macrophages upon infection by pathogenic and non-pathogenic mycobacteria. Microb Pathog 28, 313–318.[CrossRef]
    [Google Scholar]
  6. Beste, D. J., Laing, E., Bonde, B., Avignone-Rossa, C., Bushell, M. E. & McFadden, J. J. ( 2007; ). Transcriptomic analysis identifies growth rate modulation as a component of the adaptation of mycobacteria to survival inside the macrophage. J Bacteriol 189, 3969–3976.[CrossRef]
    [Google Scholar]
  7. Beste, D. J., Espasa, M., Bonde, B., Kierzek, A. M., Stewart, G. R. & McFadden, J. ( 2009; ). The genetic requirements for fast and slow growth in mycobacteria. PLoS One 4, e5349 [CrossRef]
    [Google Scholar]
  8. Chaba, R., Raje, M. & Chakraborti, P. K. ( 2002; ). Evidence that a eukaryotic-type serine/threonine protein kinase from Mycobacterium tuberculosis regulates morphological changes associated with cell division. Eur J Biochem 269, 1078–1085.[CrossRef]
    [Google Scholar]
  9. Chao, J., Wong, D., Zheng, X., Poirier, V., Bach, H., Hmama, Z. & Av-Gay, Y. ( 2009; ). Protein kinase and phosphatase signaling in Mycobacterium tuberculosis physiology and pathogenesis. Biochim Biophys Acta 1804, 620–627.
    [Google Scholar]
  10. Cohen-Gonsaud, M., Barthe, P., Canova, M. J., Stagier-Simon, C., Kremer, L., Roumestand, C. & Molle, V. ( 2009; ). The Mycobacterium tuberculosis Ser/Thr kinase substrate Rv2175c is a DNA-binding protein regulated by phosphorylation. J Biol Chem 284, 19290–19300.[CrossRef]
    [Google Scholar]
  11. Cole, S. T., Brosch, R., Parkhill, J., Garnier, T., Churcher, C., Harris, D., Gordon, S. V., Eiglmeier, K., Gas, S. & other authors ( 1998; ). Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393, 537–544.[CrossRef]
    [Google Scholar]
  12. Cooper, A. M., Magram, J., Ferrante, J. & Orme, I. M. ( 1997; ). Interleukin 12 (IL-12) is crucial to the development of protective immunity in mice intravenously infected with Mycobacterium tuberculosis. J Exp Med 186, 39–45.[CrossRef]
    [Google Scholar]
  13. Cowley, S., Ko, M., Pick, N., Chow, R., Downing, K. J., Gordhan, B. G., Betts, J. C., Mizrahi, V., Smith, D. A. & other authors ( 2004; ). The Mycobacterium tuberculosis protein serine/threonine kinase PknG is linked to cellular glutamate/glutamine levels and is important for growth in vivo. Mol Microbiol 52, 1691–1702.[CrossRef]
    [Google Scholar]
  14. Cozzone, A. J. ( 2005; ). Role of protein phosphorylation on serine/threonine and tyrosine in the virulence of bacterial pathogens. J Mol Microbiol Biotechnol 9, 198–213.[CrossRef]
    [Google Scholar]
  15. Cui, T., Zhang, L., Wang, X. & He, Z. G. ( 2009; ). Uncovering new signaling proteins and potential drug targets through the interactome analysis of Mycobacterium tuberculosis. BMC Genomics 10, 118 [CrossRef]
    [Google Scholar]
  16. Dasgupta, N., Kapur, V., Singh, K. K., Das, T. K., Sachdeva, S., Jyothisri, K. & Tyagi, J. S. ( 2000; ). Characterization of a two-component system, devR-devS, of Mycobacterium tuberculosis. Tuber Lung Dis 80, 141–159.[CrossRef]
    [Google Scholar]
  17. Dasgupta, A., Datta, P., Kundu, M. & Basu, J. ( 2006; ). The serine/threonine kinase PknB of Mycobacterium tuberculosis phosphorylates PBPA, a penicillin-binding protein required for cell division. Microbiology 152, 493–504.[CrossRef]
    [Google Scholar]
  18. Deol, P., Vohra, R., Saini, A. K., Singh, A., Chandra, H., Chopra, P., Das, T. K., Tyagi, A. K. & Singh, Y. ( 2005; ). Role of Mycobacterium tuberculosis Ser/Thr kinase PknF: implications in glucose transport and cell division. J Bacteriol 187, 3415–3420.[CrossRef]
    [Google Scholar]
  19. Falcone, V., Bassey, E. B., Toniolo, A., Conaldi, P. G. & Collins, F. M. ( 1994; ). Differential release of tumor necrosis factor-alpha from murine peritoneal macrophages stimulated with virulent and avirulent species of mycobacteria. FEMS Immunol Med Microbiol 8, 225–232.
    [Google Scholar]
  20. Flynn, J. L., Chan, J., Triebold, K. J., Dalton, D. K., Stewart, T. A. & Bloom, B. R. ( 1993; ). An essential role for interferon gamma in resistance to Mycobacterium tuberculosis infection. J Exp Med 178, 2249–2254.[CrossRef]
    [Google Scholar]
  21. Gonzales, A. M. & Orlando, R. A. ( 2008; ). Curcumin and resveratrol inhibit nuclear factor-kappaB-mediated cytokine expression in adipocytes. Nutr Metab (Lond) 5, 17 [CrossRef]
    [Google Scholar]
  22. Gopalaswamy, R., Narayanan, S., Jacobs, W. R., Jr & Av-Gay, Y. ( 2008; ). Mycobacterium smegmatis biofilm formation and sliding motility are affected by the serine/threonine protein kinase PknF. FEMS Microbiol Lett 278, 121–127.[CrossRef]
    [Google Scholar]
  23. Gopalaswamy, R., Narayanan, S., Chen, B., Jacobs, W. R. & Av-Gay, Y. ( 2009; ). The serine/threonine protein kinase PknI controls the growth of Mycobacterium tuberculosis upon infection. FEMS Microbiol Lett 295, 23–29.[CrossRef]
    [Google Scholar]
  24. Graham, J. E. & Clark-Curtiss, J. E. ( 1999; ). Identification of Mycobacterium tuberculosis RNAs synthesized in response to phagocytosis by human macrophages by selective capture of transcribed sequences (SCOTS). Proc Natl Acad Sci U S A 96, 11554–11559.[CrossRef]
    [Google Scholar]
  25. Greenstein, A. E., Grundner, C., Echols, N., Gay, L. M., Lombana, T. N., Miecskowski, C. A., Pullen, K. E., Sung, P. Y. & Alber, T. ( 2005; ). Structure/function studies of Ser/Thr and Tyr protein phosphorylation in Mycobacterium tuberculosis. J Mol Microbiol Biotechnol 9, 167–181.[CrossRef]
    [Google Scholar]
  26. Greenstein, A. E., MacGurn, J. A., Baer, C. E., Falick, A. M., Cox, J. S. & Alber, T. ( 2007; ). M. tuberculosis Ser/Thr protein kinase D phosphorylates an anti-anti-sigma factor homolog. PLoS Pathog 3, e49 [CrossRef]
    [Google Scholar]
  27. Haydel, S. E. & Clark-Curtiss, J. E. ( 2004; ). Global expression analysis of two-component system regulator genes during Mycobacterium tuberculosis growth in human macrophages. FEMS Microbiol Lett 236, 341–347.[CrossRef]
    [Google Scholar]
  28. Hou, J. Y., Graham, J. E. & Clark-Curtiss, J. E. ( 2002; ). Mycobacterium avium genes expressed during growth in human macrophages detected by selective capture of transcribed sequences (SCOTS). Infect Immun 70, 3714–3726.[CrossRef]
    [Google Scholar]
  29. Jang, J., Stella, A., Boudou, F., Levillain, F., Darthuy, E., Vaubourgeix, J., Wang, C., Bardou, F., Puzo, G. & other authors ( 2010; ). Functional characterization of the Mycobacterium tuberculosis serine/threonine kinase Pkn. Microbiology 156, 1619–1631.[CrossRef]
    [Google Scholar]
  30. Kang, C. M., Abbott, D. W., Park, S. T., Dascher, C. C., Cantley, L. C. & Husson, R. N. ( 2005; ). The Mycobacterium tuberculosis serine/threonine kinases PknA and PknB: substrate identification and regulation of cell shape. Genes Dev 19, 1692–1704.[CrossRef]
    [Google Scholar]
  31. Kang, C. M., Nyayapathy, S., Lee, J. Y., Suh, J. W. & Husson, R. N. ( 2008; ). Wag31, a homologue of the cell division protein DivIVA, regulates growth, morphology and polar cell wall synthesis in mycobacteria. Microbiology 154, 725–735.[CrossRef]
    [Google Scholar]
  32. Kelly, B. P., Furney, S. K., Jessen, M. T. & Orme, I. M. ( 1996; ). Low-dose aerosol infection model for testing drugs for efficacy against Mycobacterium tuberculosis. Antimicrob Agents Chemother 40, 2809–2812.
    [Google Scholar]
  33. Korf, J., Stoltz, A., Verschoor, J., De Baetselier, P. & Grooten, J. ( 2005; ). The Mycobacterium tuberculosis cell wall component mycolic acid elicits pathogen-associated host innate immune responses. Eur J Immunol 35, 890–900.[CrossRef]
    [Google Scholar]
  34. Kumar, P., Kumar, D., Parikh, A., Rananaware, D., Gupta, M., Singh, Y. & Nandicoori, V. K. ( 2009; ). The Mycobacterium tuberculosis protein kinase K modulates activation of transcription from the promoter of mycobacterial monooxygenase operon through phosphorylation of the transcriptional regulator VirS. J Biol Chem 284, 11090–11099.[CrossRef]
    [Google Scholar]
  35. MacMicking, J. D., North, R. J., LaCourse, R., Mudgett, J. S., Shah, S. K. & Nathan, C. F. ( 1997; ). Identification of nitric oxide synthase as a protective locus against tuberculosis. Proc Natl Acad Sci U S A 94, 5243–5248.[CrossRef]
    [Google Scholar]
  36. Magram, J., Sfarra, J., Connaughton, S., Faherty, D., Warrier, R., Carvajal, D., Wu, C. Y., Stewart, C., Sarmiento, U. & Gately, M. K. ( 1996; ). IL-12-deficient mice are defective but not devoid of type 1 cytokine responses. Ann N Y Acad Sci 795, 60–70.[CrossRef]
    [Google Scholar]
  37. Malhotra, V., Tyagi, J. S. & Clark-Curtiss, J. E. ( 2009; ). DevR-mediated adaptive response in Mycobacterium tuberculosis H37Ra: links to asparagine metabolism. Tuberculosis (Edinb) 89, 169–174.[CrossRef]
    [Google Scholar]
  38. Molle, V., Brown, A. K., Besra, G. S., Cozzone, A. J. & Kremer, L. ( 2006; ). The condensing activities of the Mycobacterium tuberculosis type II fatty acid synthase are differentially regulated by phosphorylation. J Biol Chem 281, 30094–30103.[CrossRef]
    [Google Scholar]
  39. Narayan, A., Sachdeva, P., Sharma, K., Saini, A. K., Tyagi, A. K. & Singh, Y. ( 2007; ). Serine threonine protein kinases of mycobacterial genus: phylogeny to function. Physiol Genomics 29, 66–75.
    [Google Scholar]
  40. O'Hare, H. M., Durán, R., Cerveñansky, C., Bellinzoni, M., Wehenkel, A. M., Pritsch, O., Obal, G., Baumgartner, J., Vialaret, J. & other authors ( 2008; ). Regulation of glutamate metabolism by protein kinases in mycobacteria. Mol Microbiol 70, 1408–1423.[CrossRef]
    [Google Scholar]
  41. Overbergh, L., Valckx, D., Waer, M. & Mathieu, C. ( 1999; ). Quantification of murine cytokine mRNAs using real time quantitative reverse transcriptase PCR. Cytokine 11, 305–312.[CrossRef]
    [Google Scholar]
  42. Papavinasasundaram, K. G., Chan, B., Chung, J. H., Colston, M. J., Davis, E. O. & Av-Gay, Y. ( 2005; ). Deletion of the Mycobacterium tuberculosis pknH gene confers a higher bacillary load during the chronic phase of infection in BALB/c mice. J Bacteriol 187, 5751–5760.[CrossRef]
    [Google Scholar]
  43. Park, S. T., Kang, C. M. & Husson, R. N. ( 2008; ). Regulation of the SigH stress response regulon by an essential protein kinase in Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 105, 13105–13110.[CrossRef]
    [Google Scholar]
  44. Saini, D. K., Malhotra, V., Dey, D., Pant, N., Das, T. K. & Tyagi, J. S. ( 2004; ). DevR-DevS is a bona fide two-component system of Mycobacterium tuberculosis that is hypoxia-responsive in the absence of the DNA-binding domain of DevR. Microbiology 150, 865–875.[CrossRef]
    [Google Scholar]
  45. Scherr, N., Muller, P., Perisa, D., Combaluzier, B., Jeno, P. & Pieters, J. ( 2009; ). Survival of pathogenic mycobacteria in macrophages is mediated through autophosphorylation of protein kinase G. J Bacteriol 191, 4546–4554.[CrossRef]
    [Google Scholar]
  46. Sharma, D. & Tyagi, J. S. ( 2007; ). The value of comparative genomics in understanding mycobacterial virulence: Mycobacterium tuberculosis H37Ra genome sequencing – a worthwhile endeavour. J Biosci 32, 185–189.[CrossRef]
    [Google Scholar]
  47. Sharma, K., Gupta, M., Krupa, A., Srinivasan, N. & Singh, Y. ( 2006; ). EmbR, a regulatory protein with ATPase activity, is a substrate of multiple serine/threonine kinases and phosphatase in Mycobacterium tuberculosis. FEBS J 273, 2711–2721.[CrossRef]
    [Google Scholar]
  48. Shi, L., Jung, Y. J., Tyagi, S., Gennaro, M. L. & North, R. J. ( 2003; ). Expression of Th1-mediated immunity in mouse lungs induces a Mycobacterium tuberculosis transcription pattern characteristic of nonreplicating persistence. Proc Natl Acad Sci U S A 100, 241–246.[CrossRef]
    [Google Scholar]
  49. Singh, A., Jain, S., Gupta, S., Das, T. & Tyagi, A. K. ( 2003; ). mymA operon of Mycobacterium tuberculosis: its regulation and importance in the cell envelope. FEMS Microbiol Lett 227, 53–63.[CrossRef]
    [Google Scholar]
  50. Singh, A., Gupta, R., Vishwakarma, R. A., Narayanan, P. R., Paramasivan, C. N., Ramanathan, V. D. & Tyagi, A. K. ( 2005; ). Requirement of the mymA operon for appropriate cell wall ultrastructure and persistence of Mycobacterium tuberculosis in the spleens of guinea pigs. J Bacteriol 187, 4173–4186.[CrossRef]
    [Google Scholar]
  51. Singh, A., Singh, Y., Pine, R., Shi, L., Chandra, R. & Drlica, K. ( 2006; ). Protein kinase I of Mycobacterium tuberculosis: cellular localization and expression during infection of macrophage-like cells. Tuberculosis (Edinb) 86, 28–33.[CrossRef]
    [Google Scholar]
  52. Stover, C. K., de la Cruz, V. F., Fuerst, T. R., Burlein, J. E., Benson, L. A., Bennett, L. T., Bansal, G. P., Young, J. F., Lee, M. H. & other authors ( 1991; ). New use of BCG for recombinant vaccines. Nature 351, 456–460.[CrossRef]
    [Google Scholar]
  53. Talaat, A. M., Ward, S. K., Wu, C. W., Rondon, E., Tavano, C., Bannantine, J. P., Lyons, R. & Johnston, S. A. ( 2007; ). Mycobacterial bacilli are metabolically active during chronic tuberculosis in murine lungs: insights from genome-wide transcriptional profiling. J Bacteriol 189, 4265–4274.[CrossRef]
    [Google Scholar]
  54. Thakur, M. & Chakraborti, P. K. ( 2006; ). GTPase activity of mycobacterial FtsZ is impaired due to its transphosphorylation by the eukaryotic-type Ser/Thr kinase, PknA. J Biol Chem 281, 40107–40113.[CrossRef]
    [Google Scholar]
  55. Thakur, M. & Chakraborti, P. K. ( 2008; ). Ability of PknA, a mycobacterial eukaryotic-type serine/threonine kinase, to transphosphorylate MurD, a ligase involved in the process of peptidoglycan biosynthesis. Biochem J 415, 27–33.[CrossRef]
    [Google Scholar]
  56. Tiwari, D., Singh, R. K., Goswami, K., Verma, S. K., Prakash, B. & Nandicoori, V. K. ( 2009; ). Key residues in Mycobacterium tuberculosis protein kinase G play a role in regulating kinase activity and survival in the host. J Biol Chem 284, 27467–27479.[CrossRef]
    [Google Scholar]
  57. Veyron-Churlet, R., Molle, V., Taylor, R. C., Brown, A. K., Besra, G. S., Zanella-Cleon, I., Futterer, K. & Kremer, L. ( 2009; ). The Mycobacterium tuberculosis beta-ketoacyl-acyl carrier protein synthase III activity is inhibited by phosphorylation on a single threonine residue. J Biol Chem 284, 6414–6424.[CrossRef]
    [Google Scholar]
  58. Walburger, A., Koul, A., Ferrari, G., Nguyen, L., Prescianotto-Baschong, C., Huygen, K., Klebl, B., Thompson, C., Bacher, G. & Pieters, J. ( 2004; ). Protein kinase G from pathogenic mycobacteria promotes survival within macrophages. Science 304, 1800–1804.[CrossRef]
    [Google Scholar]
  59. Zhang, W., Munoz-Dorado, J., Inouye, M. & Inouye, S. ( 1992; ). Identification of a putative eukaryotic-like protein kinase family in the developmental bacterium Myxococcus xanthus. J Bacteriol 174, 5450–5453.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.040675-0
Loading
/content/journal/micro/10.1099/mic.0.040675-0
Loading

Data & Media loading...

qRT-PCR analysis of STPK gene expression in M. tuberculosis H37Rv and H37Ra. [PDF]

PDF

Deletion of pknK increases resistance of M. tuberculosis to in vitro stress conditions. [PDF]

PDF

Primer sequences used in this study. [PDF]

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error