1887

Abstract

is the leading biopesticide used to control insect pests worldwide. Although they have a long record of safe use, under certain conditions commercial strains of have the ability to produce numerous putative enterotoxins that have been associated with food poisoning attributed to . Therefore, we designed a strategy to delete the genes encoding these toxins. strain VBTS 2477 contained genes encoding NHE, CytK-2 and three homologues of haemolysin BL (HBL, HBL and HBL). This is the first report, to our knowledge, of a strain of or containing three sets of operons. The genes encoding HBL and HBL were 96–97 % identical to each other and 76–84 % identical to those encoding HBL. The operon was detected by PCR amplification only after was deleted. We used sequential gene replacement to replace the wild-type copies of the NHE and three HBL operons with copies that contained internal deletions that span the three genes in each operon. The insecticidal activity of the quadruple-enterotoxin-deficient mutant was similar to that of the wild-type strain against larvae of , and . This demonstrates that the genes for enterotoxins can be deleted, eliminating the possibility of enterotoxin production without compromising the insecticidal efficacy of a strain of .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.039925-0
2010-12-01
2020-09-27
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/12/3575.html?itemId=/content/journal/micro/10.1099/mic.0.039925-0&mimeType=html&fmt=ahah

References

  1. Agata N., Ohta M., Mori M., Isobe M.. 1995; A novel dodecadepsipeptide, cereulide, is an emetic toxin of Bacillus cereus . FEMS Microbiol Lett129:17–20
    [Google Scholar]
  2. Arnaud M., Chastanet A., Débarbouillé M.. 2004; New vector for efficient allelic replacement in naturally nontransformable, low-GC-content, Gram-positive bacteria. Appl Environ Microbiol70:6887–6891
    [Google Scholar]
  3. Beecher D. J., MacMillan J. D.. 1991; Characterization of the components of hemolysin BL from Bacillus cereus . Infect Immun59:1778–1784
    [Google Scholar]
  4. Beecher D. J., Wong A. C.. 1994a; Identification and analysis of the antigens detected by two commercial Bacillus cereus diarrheal enterotoxin immunoassay kits. Appl Environ Microbiol60:4614–4616
    [Google Scholar]
  5. Beecher D. J., Wong A. C.. 1994b; Improved purification and characterization of hemolysin BL, a hemolytic dermonecrotic vascular permeability factor from Bacillus cereus . Infect Immun62:980–986
    [Google Scholar]
  6. Beecher D. J., Wong A. C.. 2000; Tripartite haemolysin BL: isolation and characterization of two distinct homologous sets of components from a single Bacillus cereus isolate. Microbiology146:1371–1380
    [Google Scholar]
  7. Beecher D. J., Pulido J. S., Barney N. P., Wong A. C. L.. 1995; Extracellular virulence factors in Bacillus cereus endophthalmitis: methods and implication of involvement of hemolysin BL. Infect Immun63:632–639
    [Google Scholar]
  8. Bergdoll M. S.. 1988; Ileal loop fluid accumulation test for diarrheal toxins. Methods Enzymol165:306–323
    [Google Scholar]
  9. Bizzarri M. F., Bishop A. H.. 2007; Recovery of Bacillus thuringiensis in vegetative form from the phylloplane of clover ( Trifolium hybridum ) during a growing season. J Invertebr Pathol94:38–47
    [Google Scholar]
  10. Carlson C. R., Caugant D. A., Kolstø A. B.. 1994; Genotypic diversity among Bacillus cereus and Bacillus thuringiensis strains. Appl Environ Microbiol60:1719–1725
    [Google Scholar]
  11. CDC 2009; Surveillance for foodborne disease outbreaks – United States, 2006. MMWR58:609–615
    [Google Scholar]
  12. Clavel T., Carlin F., Lairon D., Nguyen-The C., Schmitt P.. 2004; Survival of Bacillus cereus spores and vegetative cells in acid media simulating human stomach. J Appl Microbiol97:214–219
    [Google Scholar]
  13. Clavel T., Carlin F., Daragaignaratz C., Lairon D., Nguyen-The C., Schmitt P.. 2007; Effects of porcine bile on survival of Bacillus cereus vegetative cells and Haemolysin BL enterotoxin production in reconstituted human small intestine media. J Appl Microbiol103:1568–1575
    [Google Scholar]
  14. Damgaard P. H.. 1995; Diarrhoeal enterotoxin production by strains of Bacillus thuringiensis isolated from commercial Bacillus thuringiensis -based insecticides. FEMS Immunol Med Microbiol12:245–250
    [Google Scholar]
  15. Ehling-Schulz M., Svensson B., Guinebretier M. H., Lindbäck T., Andersson M., Schulz A., Fricker M., Christiansson A., Granum P. E.. other authors 2005; Emetic toxin formation of Bacillus cereus is restricted to a single evolutionary lineage of closely related strains. Microbiology151:183–197
    [Google Scholar]
  16. Ehling-Schulz M., Guinebretier M. H., Monthán A., Berge O., Fricker M., Svensson B.. 2006; Toxin gene profiling of enterotoxic and emetic Bacillus cereus . FEMS Microbiol Lett260:232–240
    [Google Scholar]
  17. European Food Safety Authority 2005; Opinion of the scientific panel on biological hazards on Bacillus cereus and other Bacillus spp. in foodstuffs.
  18. Fagerlund A., Ween A., Lund T., Hardy S. P., Granum P. E.. 2004; Genetic and functional analysis of the cytK family of genes in Bacillus cereus . Microbiology150:2689–2697
    [Google Scholar]
  19. Fagerlund A., Brillard J., Fürst R., Guinebretière M. H., Granum P. E.. 2007; Toxin production in a rare and genetically remote cluster of strains of the Bacillus cereus group. BMC Microbiol7:43
    [Google Scholar]
  20. Fagerlund A., Lindbäck T., Storset A. K., Granum P. E., Hardy S. P.. 2008; Bacillus cereus Nhe is a pore-forming toxin with functional properties similar to the ClyA (HlyE, SheA) family of haemolysins, able to induce osmotic lysis in epithelia. Microbiology154:693–704
    [Google Scholar]
  21. Fisher R., Rosner L.. 1959; Toxicology of the microbial insecticide, Thuricide. J Agric Food Chem7:686–689
    [Google Scholar]
  22. Frederiksen K., Rosenquist H., Jørgensen K., Wilcks A.. 2006; Occurrence of natural Bacillus thuringiensis contaminants and residues of Bacillus thuringiensis insecticides on fresh fruits and vegetables. Appl Environ Microbiol72:3435–3440
    [Google Scholar]
  23. Gaviria Rivera A. M., Granum P. E., Priest F. G.. 2000; Common occurrence of enterotoxin genes and enterotoxicity in Bacillus thuringiensis . FEMS Microbiol Lett190:151–155
    [Google Scholar]
  24. Granum P. E.. Edited by 2002; Bacillus cereus and food poisoning. In Applications and Systematics of Bacillus and Relatives pp37–46 Berkeley R., Heyndrickx M., Logan N., De Vos P.. Oxford: Blackwell Science Ltd;
    [Google Scholar]
  25. Granum P. E., O'Sullivan K., Lund T.. 1999; The sequence of the non-haemolytic enterotoxin operon from Bacillus cereus . FEMS Microbiol Lett177:225–229
    [Google Scholar]
  26. Guinebretière M. H., Broussolle V., Nguyen-The C.. 2002; Enterotoxigenic profiles of food-poisoning and food-borne Bacillus cereus strains. J Clin Microbiol40:3053–3056
    [Google Scholar]
  27. Hanahan D.. 1983; Studies on transformation of Escherichia coli with plasmids. J Mol Biol166:557–580
    [Google Scholar]
  28. Hansen B. M., Hendriksen N. B.. 2001; Detection of enterotoxin Bacillus cereus and Bacillus thuringiensis strains by PCR analysis. Appl Environ Microbiol67:185–189
    [Google Scholar]
  29. Hardy S. P., Lund T., Granum P. E.. 2001; CytK toxin of Bacillus cereus forms pores in planar lipid bilayers and is cytotoxic to intestinal epithelia. FEMS Microbiol Lett197:47–51
    [Google Scholar]
  30. Heinrichs J. H., Beecher D. J., MacMillan J. D., Zilinskas B. A.. 1993; Molecular cloning and characterization of the hblA gene encoding the B component of hemolysin BL from Bacillus cereus . J Bacteriol175:6760–6766
    [Google Scholar]
  31. Helgason E., Økstad O. A., Caugant D. A., Johansen H. A., Fouet A., Mock M., Hegna I., Kolstø A. B.. 2000; Bacillus anthracis , Bacillus cereus , and Bacillus thuringiensis – one species on the basis of genetic evidence. Appl Environ Microbiol66:2627–2630
    [Google Scholar]
  32. Hendriksen N. B., Hansen B. M.. 2006; Detection of Bacillus thuringiensis kurstaki HD1 on cabbage for human consumption. FEMS Microbiol Lett257:106–111
    [Google Scholar]
  33. Hill K. K., Ticknor L. O., Okinaka R. T., Asay M., Blair H., Bliss K. A., Laker M., Pardington P. E., Richardson A. P.. other authors 2004; Fluorescent amplified fragment length polymorphism analysis of Bacillus anthracis , Bacillus cereus , and Bacillus thuringiensis isolates. Appl Environ Microbiol70:1068–1080
    [Google Scholar]
  34. Horton R. M., Hunt H. D., Ho S. N., Pullen J. K., Pease L. R.. 1989; Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension. Gene77:61–68
    [Google Scholar]
  35. Janes B. K., Stibitz S.. 2006; Routine markerless gene replacement in Bacillus anthracis . Infect Immun74:1949–1953
    [Google Scholar]
  36. Jara S., Maduell P., Orduz S.. 2006; Diversity of Bacillus thuringiensis strains in maize and bean phylloplane and their respective soils in Colombia. J Appl Microbiol101:117–124
    [Google Scholar]
  37. Jensen G. B., Larsen P., Jacobsen B. L., Madsen B., Smidt L., Andrup L.. 2002; Bacillus thuringiensis in fecal samples from greenhouse workers after exposure to B. thuringiensis -based pesticides. Appl Environ Microbiol68:4900–4905
    [Google Scholar]
  38. Jensen G. B., Hansen B. M., Eilenberg J., Mahillon J.. 2003; The hidden lifestyles of Bacillus cereus and relatives. Environ Microbiol5:631–640
    [Google Scholar]
  39. Kotiranta A., Lounatmaa K., Haapasalo M.. 2000; Epidemiology and pathogenesis of Bacillus cereus infections. Microbes Infect2:189–198
    [Google Scholar]
  40. Kyei-Poku G., Gauthier D., Pang A., van Frankenhuyzen K.. 2007; Detection of Bacillus cereus virulence factors in commercial products of Bacillus thuringiensis and expression of diarrheal enterotoxins in a target insect. Can J Microbiol53:1283–1290
    [Google Scholar]
  41. Lindbäck T., Fagerlund A., Rødland M. S., Granum P. E.. 2004; Characterization of the Bacillus cereus Nhe enterotoxin. Microbiology150:3959–3967
    [Google Scholar]
  42. Lund T., Granum P. E.. 1996; Characterisation of a non-haemolytic enterotoxin complex from Bacillus cereus isolated after a foodborne outbreak. FEMS Microbiol Lett141:151–156
    [Google Scholar]
  43. Lund T., Granum P. E.. 1997; Comparison of biological effect of the two different enterotoxin complexes isolated from three different strains of Bacillus cereus . Microbiology143:3329–3336
    [Google Scholar]
  44. Lund T., De Buyser M. L., Granum P. E.. 2000; A new cytotoxin from Bacillus cereus that may cause necrotic enteritis. Mol Microbiol38:254–261
    [Google Scholar]
  45. Margulis L., Jorgensen J. Z., Dolan S., Kolchinsky R., Rainey F. A.. 1998; The Arthromitus stage of Bacillus cereus : intestinal symbionts of animals. Proc Natl Acad Sci U S A95:1236–1241
    [Google Scholar]
  46. Martin P. A., Travers R. S.. 1989; Worldwide abundance and distribution of Bacillus thuringiensis isolates. Appl Environ Microbiol55:2437–2442
    [Google Scholar]
  47. McIntyre L., Bernard K., Beniac D., Isaac-Renton J. L., Naseby D. C.. 2008; Identification of Bacillus cereus group species, associated with food poisoning outbreaks in British Columbia, Canada. Appl Environ Microbiol74:7451–7453
    [Google Scholar]
  48. Moravek M., Dietrich R., Buerk C., Broussolle V., Guinebretière M. H., Granum P. E., Nguyen-The C., Märtlbauer E.. 2006; Determination of the toxic potential of Bacillus cereus isolates by quantitative enterotoxin analyses. FEMS Microbiol Lett257:293–298
    [Google Scholar]
  49. Ngamwongsatit P., Buasri W., Pianariyanon P., Pulsrikarn C., Ohba M., Assavanig A., Panbangred W.. 2008; Broad distribution of enterotoxin genes ( hblCDA , nheABC , cytK , and entFM) among Bacillus thuringiensis and Bacillus cereus as shown by novel primers. Int J Food Microbiol121:352–356
    [Google Scholar]
  50. Raffel S. J., Stabb E. V., Milner J. L., Handelsman J.. 1996; Genotypic and phenotypic analysis of zwittermicin A-producing strains of Bacillus cereus . Microbiology142:3425–3436
    [Google Scholar]
  51. Ramarao N., Lereclus D.. 2006; Adhesion and cytotoxicity of Bacillus cereus and Bacillus thuringiensis to epithelial cells are FlhA and PlcR dependent, respectively. Microbes Infect8:1483–1491
    [Google Scholar]
  52. Rasko D. A., Altherr M. R., Han C. S., Ravel J.. 2005; Genomics of the Bacillus cereus group of organisms. FEMS Microbiol Rev29:303–329
    [Google Scholar]
  53. Rosenquist H., Smidt L., Andersen S. R., Jensen G. B., Wilcks A.. 2005; Occurrence and significance of Bacillus cereus and Bacillus thuringiensis in ready-to-eat food. FEMS Microbiol Lett250:129–136
    [Google Scholar]
  54. Ryan P. A., MacMillan J. D., Zilinskas B. A.. 1997; Molecular cloning and characterization of the genes encoding the L1 and L2 components of hemolysin BL from Bacillus cereus . J Bacteriol179:2551–2556
    [Google Scholar]
  55. Salamitou S., Ramisse F., Brehélin M., Bourguet D., Gilois N., Gominet M., Hernandez E., Lereclus D.. 2000; The plcR regulon is involved in the opportunistic properties of Bacillus thuringiensis and Bacillus cereus in mice and insects. Microbiology146:2825–2832
    [Google Scholar]
  56. Schoeni J. L., Wong A. C.. 1999; Heterogeneity observed in the components of hemolysin BL, an enterotoxin produced by Bacillus cereus . Int J Food Microbiol53:159–167
    [Google Scholar]
  57. Silo-Suh L. A., Lethbridge B. J., Raffel S. J., He H., Clardy J., Handelsman J.. 1994; Biological activities of two fungistatic antibiotics produced by Bacillus cereus UW85. Appl Environ Microbiol60:2023–2030
    [Google Scholar]
  58. Smith R. A., Couche G. A.. 1991; The phylloplane as a source of Bacillus thuringiensis variants. Appl Environ Microbiol57:311–315
    [Google Scholar]
  59. Stenfors Arnesen L. P., Fagerlund A., Granum P. E.. 2008; From soil to gut: Bacillus cereus and its food poisoning toxins. FEMS Microbiol Rev32:579–606
    [Google Scholar]
  60. Swiecicka I., Mahillon J.. 2006; Diversity of commensal Bacillus cereus sensu lato isolated from the common sow bug ( Porcellio scaber , Isopoda. FEMS Microbiol Ecol56:132–140
    [Google Scholar]
  61. Swiecicka I., Van der Auwera G. A., Mahillon J.. 2006; Hemolytic and nonhemolytic enterotoxin genes are broadly distributed among Bacillus thuringiensis isolated from wild mammals. Microb Ecol52:544–551
    [Google Scholar]
  62. Thaenthanee S., Wong A. C., Panbangred W.. 2005; Phenotypic and genotypic comparisons reveal a broad distribution and heterogeneity of hemolysin BL genes among Bacillus cereus isolates. Int J Food Microbiol105:203–212
    [Google Scholar]
  63. U.S. Environmental Protection Agency 1998; Reregistration Eligibility Decision Document: Bacillus thuringiensis ; EPA-738-R-98–004; U.S. Environmental Protection Agency, Office of Pesticide Programs, US Government Printing Office Washington, DC: March 1998. (. )
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.039925-0
Loading
/content/journal/micro/10.1099/mic.0.039925-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error