1887

Abstract

subspecies serovar Enteritidis (. Enteritidis) has been identified as a significant cause of salmonellosis in humans. pathogenicity islands 1 and 2 (SPI-1 and SPI-2) each encode a specialized type III secretion system (T3SS) that enables to manipulate host cells at various stages of the invasion/infection process. For the purposes of our studies we used a chicken isolate of Enteritidis (Sal18). In one study, we orally co-challenged 35-day-old specific pathogen-free (SPF) chickens with two bacterial strains per group. The control group received two versions of the wild-type strain Sal18: Sal18 Tn : :  and Sal18 Tn : : , while the other two groups received the wild-type strain (Sal18 Tn : : ) and one of two mutant strains. From this study, we concluded that . Enteritidis strains deficient in the SPI-1 and SPI-2 systems were outcompeted by the wild-type strain. In a second study, groups of SPF chickens were challenged at 1 week of age with four different strains: the wild-type strain, and three other strains lacking either one or both of the SPI-1 and SPI-2 regions. On days 1 and 2 post-challenge, we observed a reduced systemic spread of the SPI-2 mutants, but by day 3, the systemic distribution levels of the mutants matched that of the wild-type strain. Based on these two studies, we conclude that the . Enteritidis SPI-2 T3SS facilitates invasion and systemic spread in chickens, although alternative mechanisms for these processes appear to exist.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.038018-0
2010-09-01
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/9/2770.html?itemId=/content/journal/micro/10.1099/mic.0.038018-0&mimeType=html&fmt=ahah

References

  1. Babu, U. S., Gaines, D. W., Lillehoj, H. & Raybourne, R. B. ( 2006; ). Differential reactive oxygen and nitrogen production and clearance of Salmonella serovars by chicken and mouse macrophages. Dev Comp Immunol 30, 942–953.[CrossRef]
    [Google Scholar]
  2. Berndt, A., Wilhelm, A., Jugert, C., Pieper, J., Sachse, K. & Methner, U. ( 2007; ). Chicken cecum immune response to Salmonella enterica serovars of different levels of invasiveness. Infect Immun 75, 5993–6007.[CrossRef]
    [Google Scholar]
  3. Bohez, L., Ducatelle, R., Pasmans, F., Botteldoorn, N., Haesebrouck, F. & Van Immerseel, F. ( 2006; ). Salmonella enterica serovar Enteritidis colonization of the chicken caecum requires the HilA regulatory protein. Vet Microbiol 116, 202–210.[CrossRef]
    [Google Scholar]
  4. Brawn, L. C., Hayward, R. D. & Koronakis, V. ( 2007; ). Salmonella SPI1 effector SipA persists after entry and cooperates with a SPI2 effector to regulate phagosome maturation and intracellular replication. Cell Host Microbe 1, 63–75.[CrossRef]
    [Google Scholar]
  5. Brown, N. F., Vallance, B. A., Coombes, B. K., Valdez, Y., Coburn, B. A. & Finlay, B. B. ( 2005; ). Salmonella pathogenicity island 2 is expressed prior to penetrating the intestine. PLoS Pathog 1, e32 [CrossRef]
    [Google Scholar]
  6. Callaway, T. R., Edrington, T. S., Anderson, R. C., Byrd, J. A. & Nisbet, D. J. ( 2008; ). Gastrointestinal microbial ecology and the safety of our food supply as related to Salmonella. J Anim Sci 86, E163–E172.
    [Google Scholar]
  7. Catarame, T. M. G., O'Hanlon, K. A., McDowell, D. A., Blair, I. S. & Duffy, G. ( 2005; ). Comparison of a real-time polymerase chain reaction assay with a culture method for the detection of Salmonella in retail meat samples. J Food Saf 26, 1–15.
    [Google Scholar]
  8. Chakravortty, D., Rohde, M., Jager, L., Deiwick, J. & Hensel, M. ( 2005; ). Formation of a novel surface structure encoded by Salmonella pathogenicity island 2. EMBO J 24, 2043–2052.[CrossRef]
    [Google Scholar]
  9. Clavijo, R. I., Loui, C., Andersen, G. L., Riley, L. W. & Lu, S. ( 2006; ). Identification of genes associated with survival of Salmonella enterica serovar Enteritidis in chicken egg albumen. Appl Environ Microbiol 72, 1055–1064.[CrossRef]
    [Google Scholar]
  10. Coombes, B. K. & Finlay, B. B. ( 2005; ). Insertion of the bacterial type III translocon: not your average needle stick. Trends Microbiol 13, 92–95.[CrossRef]
    [Google Scholar]
  11. Coombes, B. K., Brown, N. F., Valdez, Y., Brumell, J. H. & Finlay, B. B. ( 2004; ). Expression and secretion of Salmonella pathogenicity island-2 virulence genes in response to acidification exhibit differential requirements of a functional type III secretion apparatus and SsaL. J Biol Chem 279, 49804–49815.[CrossRef]
    [Google Scholar]
  12. Coombes, B. K., Coburn, B. A., Potter, A. A., Gomis, S., Mirakhur, K., Li, Y. & Finlay, B. B. ( 2005; ). Analysis of the contribution of Salmonella pathogenicity islands 1 and 2 to enteric disease progression using a novel bovine ileal loop model and a murine model of infectious enterocolitis. Infect Immun 73, 7161–7169.[CrossRef]
    [Google Scholar]
  13. Craig, N. L. ( 1991; ). Tn7: a target site-specific transposon. Mol Microbiol 5, 2569–2573.[CrossRef]
    [Google Scholar]
  14. Datsenko, K. A. & Wanner, B. L. ( 2000; ). One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97, 6640–6645.[CrossRef]
    [Google Scholar]
  15. Desin, T. S., Lam, P. K., Koch, B., Mickael, C., Berberov, E., Wisner, A. L., Townsend, H. G., Potter, A. A. & Köster, W. ( 2009; ). Salmonella enterica serovar Enteritidis pathogenicity island 1 is not essential for but facilitates rapid systemic spread in chickens. Infect Immun 77, 2866–2875.[CrossRef]
    [Google Scholar]
  16. Dieye, Y., Ameiss, K., Mellata, M. & Curtiss, R., III ( 2009; ). The Salmonella pathogenicity island (SPI) 1 contributes more than SPI2 to the colonization of the chicken by Salmonella enterica serovar Typhimurium. BMC Microbiol 9, 3 [CrossRef]
    [Google Scholar]
  17. el Yaagoubi, A., Kohiyama, M. & Richarme, G. ( 1994; ). Localization of DnaK (chaperone 70) from Escherichia coli in an osmotic-shock-sensitive compartment of the cytoplasm. J Bacteriol 176, 7074–7078.
    [Google Scholar]
  18. Foley, S. L., Lynne, A. M. & Nayak, R. ( 2008; ). Salmonella challenges: prevalence in swine and poultry and potential pathogenicity of such isolates. J Anim Sci 86, E149–E162.
    [Google Scholar]
  19. Fortune, D. R., Suyemoto, M. & Altier, C. ( 2006; ). Identification of CsrC and characterization of its role in epithelial cell invasion in Salmonella enterica serovar Typhimurium. Infect Immun 74, 331–339.[CrossRef]
    [Google Scholar]
  20. Galán, J. E. ( 2001; ). Salmonella interactions with host cells: type III secretion at work. Annu Rev Cell Dev Biol 17, 53–86.[CrossRef]
    [Google Scholar]
  21. Ghosh, P. ( 2004; ). Process of protein transport by the type III secretion system. Microbiol Mol Biol Rev 68, 771–795.[CrossRef]
    [Google Scholar]
  22. Giacomodonato, M. N., Uzzau, S., Bacciu, D., Caccuri, R., Sarnacki, S. H., Rubino, S. & Cerquetti, M. C. ( 2007; ). SipA, SopA, SopB, SopD and SopE2 effector proteins of Salmonella enterica serovar Typhimurium are synthesized at late stages of infection in mice. Microbiology 153, 1221–1228.[CrossRef]
    [Google Scholar]
  23. Guiney, D. G. ( 2005; ). The role of host cell death in Salmonella infections. Curr Top Microbiol Immunol 289, 131–150.
    [Google Scholar]
  24. Hansen-Wester, I., Chakravortty, D. & Hensel, M. ( 2004; ). Functional transfer of Salmonella pathogenicity island 2 to Salmonella bongori and Escherichia coli. Infect Immun 72, 2879–2888.[CrossRef]
    [Google Scholar]
  25. Hautefort, I., Thompson, A., Eriksson-Ygberg, S., Parker, M. L., Lucchini, S., Danino, V., Bongaerts, R. J., Ahmad, N., Rhen, M. & other authors ( 2008; ). During infection of epithelial cells Salmonella enterica serovar Typhimurium undergoes a time-dependent transcriptional adaptation that results in simultaneous expression of three type 3 secretion systems. Cell Microbiol 10, 958–984.[CrossRef]
    [Google Scholar]
  26. Hensel, M., Shea, J. E., Raupach, B., Monack, D., Falkow, S., Gleeson, C., Kubo, T. & Holden, D. W. ( 1997; ). Functional analysis of ssaJ and the ssaK/U operon, 13 genes encoding components of the type III secretion apparatus of Salmonella pathogenicity island 2. Mol Microbiol 24, 155–167.[CrossRef]
    [Google Scholar]
  27. Hueck, C. J. ( 1998; ). Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol Mol Biol Rev 62, 379–433.
    [Google Scholar]
  28. Jones, M. A., Wigley, P., Page, K. L., Hulme, S. D. & Barrow, P. A. ( 2001; ). Salmonella enterica serovar Gallinarum requires the Salmonella pathogenicity island 2 type III secretion system but not the Salmonella pathogenicity island 1 type III secretion system for virulence in chickens. Infect Immun 69, 5471–5476.[CrossRef]
    [Google Scholar]
  29. Jones, M. A., Hulme, S. D., Barrow, P. A. & Wigley, P. ( 2007; ). The Salmonella pathogenicity island 1 and Salmonella pathogenicity island 2 type III secretion systems play a major role in pathogenesis of systemic disease and gastrointestinal tract colonization of Salmonella enterica serovar Typhimurium in the chicken. Avian Pathol 36, 199–203.[CrossRef]
    [Google Scholar]
  30. Kuhle, V. & Hensel, M. ( 2004; ). Cellular microbiology of intracellular Salmonella enterica: functions of the type III secretion system encoded by Salmonella pathogenicity island 2. Cell Mol Life Sci 61, 2812–2826.[CrossRef]
    [Google Scholar]
  31. Lawley, T. D., Chan, K., Thompson, L. J., Kim, C. C., Govoni, G. R. & Monack, D. M. ( 2006; ). Genome-wide screen for Salmonella genes required for long-term systemic infection of the mouse. PLoS Pathog 2, e11 [CrossRef]
    [Google Scholar]
  32. Lee, Y. J., Mo, I. P. & Kang, M. S. ( 2005; ). Safety and efficacy of Salmonella gallinarum 9R vaccine in young laying chickens. Avian Pathol 34, 362–366.[CrossRef]
    [Google Scholar]
  33. Martinez-Argudo, I. & Jepson, M. A. ( 2008; ). Salmonella translocates across an in vitro M cell model independently of SPI-1 and SPI-2. Microbiology 154, 3887–3894.[CrossRef]
    [Google Scholar]
  34. McGhie, E. J., Brawn, L. C., Hume, P. J., Humphreys, D. & Koronakis, V. ( 2009; ). Salmonella takes control: effector-driven manipulation of the host. Curr Opin Microbiol 12, 117–124.[CrossRef]
    [Google Scholar]
  35. Meenakshi, M., Bakshi, C. S., Butchaiah, G., Bansal, M. P., Siddiqui, M. Z. & Singh, V. P. ( 1999; ). Adjuvanted outer membrane protein vaccine protects poultry against infection with Salmonella enteritidis. Vet Res Commun 23, 81–90.[CrossRef]
    [Google Scholar]
  36. Morgan, E., Campbell, J. D., Rowe, S. C., Bispham, J., Stevens, M. P., Bowen, A. J., Barrow, P. A., Maskell, D. J. & Wallis, T. S. ( 2004; ). Identification of host-specific colonization factors of Salmonella enterica serovar Typhimurium. Mol Microbiol 54, 994–1010.[CrossRef]
    [Google Scholar]
  37. Murphy, K. C. & Campellone, K. G. ( 2003; ). Lambda Red-mediated recombinogenic engineering of enterohemorrhagic and enteropathogenic E. coli. BMC Mol Biol 4, 11 [CrossRef]
    [Google Scholar]
  38. Olekhnovich, I. N. & Kadner, R. J. ( 2006; ). Crucial roles of both flanking sequences in silencing of the hilA promoter in Salmonella enterica. J Mol Biol 357, 373–386.[CrossRef]
    [Google Scholar]
  39. Piao, Z., Toyota-Hanatani, Y., Ohta, H., Sasai, K., Tani, H. & Baba, E. ( 2007; ). Effects of Salmonella enterica subsp. enterica serovar Enteritidis vaccination in layer hens subjected to S. Enteritidis challenge and various feed withdrawal regimens. Vet Microbiol 125, 111–119.[CrossRef]
    [Google Scholar]
  40. Rana, N. & Kulshreshtha, R. C. ( 2006; ). Cell-mediated and humoral immune responses to a virulent plasmid-cured mutant strain of Salmonella enterica serotype Gallinarum in broiler chickens. Vet Microbiol 115, 156–162.[CrossRef]
    [Google Scholar]
  41. Rhen, M. & Dorman, C. J. ( 2005; ). Hierarchical gene regulators adapt Salmonella enterica to its host milieus. Int J Med Microbiol 294, 487–502.[CrossRef]
    [Google Scholar]
  42. Rychlik, I., Karasova, D., Sebkova, A., Volf, J., Sisak, F., Havlickova, H., Kummer, V., Imre, A., Szmolka, A. & other authors ( 2009; ). Virulence potential of five major pathogenicity islands (SPI-1 to SPI-5) of Salmonella enterica serovar Enteritidis for chickens. BMC Microbiol 9, 268 [CrossRef]
    [Google Scholar]
  43. Sadeyen, J. R., Trotereau, J., Velge, P., Marly, J., Beaumont, C., Barrow, P. A., Bumstead, N. & Lalmanach, A. C. ( 2004; ). Salmonella carrier state in chicken: comparison of expression of immune response genes between susceptible and resistant animals. Microbes Infect 6, 1278–1286.[CrossRef]
    [Google Scholar]
  44. Sadeyen, J. R., Trotereau, J., Protais, J., Beaumont, C., Sellier, N., Salvat, G., Velge, P. & Lalmanach, A. C. ( 2006; ). Salmonella carrier-state in hens: study of host resistance by a gene expression approach. Microbes Infect 8, 1308–1314.[CrossRef]
    [Google Scholar]
  45. Shah, D. H., Lee, M. J., Park, J. H., Lee, J. H., Eo, S. K., Kwon, J. T. & Chae, J. S. ( 2005; ). Identification of Salmonella gallinarum virulence genes in a chicken infection model using PCR-based signature-tagged mutagenesis. Microbiology 151, 3957–3968.[CrossRef]
    [Google Scholar]
  46. Schlumberger, M. C. & Hardt, W. D. ( 2006; ). Salmonella type III secretion effectors: pulling the host cell's strings. Curr Opin Microbiol 9, 46–54.[CrossRef]
    [Google Scholar]
  47. Thompson, A., Rowley, G., Alston, M., Danino, V. & Hinton, J. C. ( 2006; ). Salmonella transcriptomics: relating regulons, stimulons and regulatory networks to the process of infection. Curr Opin Microbiol 9, 109–116.[CrossRef]
    [Google Scholar]
  48. Thomson, N. R., Clayton, D. J., Windhorst, D., Vernikos, G., Davidson, S., Churcher, C., Quail, M. A., Stevens, M., Jones, M. A. & other authors ( 2008; ). Comparative genome analysis of Salmonella Enteritidis PT4 and Salmonella Gallinarum 287/91 provides insights into evolutionary and host adaptation pathways. Genome Res 18, 1624–1637.[CrossRef]
    [Google Scholar]
  49. Tischer, B. K., von Einem, J., Kaufer, B. & Osterrieder, N. ( 2006; ). Two-step red-mediated recombination for versatile high-efficiency markerless DNA manipulation in Escherichia coli. Biotechniques 40, 191–197.[CrossRef]
    [Google Scholar]
  50. Turner, A. K., Lovell, M. A., Hulme, S. D., Zhang-Barber, L. & Barrow, P. A. ( 1998; ). Identification of Salmonella typhimurium genes required for colonization of the chicken alimentary tract and for virulence in newly hatched chicks. Infect Immun 66, 2099–2106.
    [Google Scholar]
  51. Vieira, A. & other authors ( 2009; ). WHO Global Foodborne Infections Network Country Databank – a resource to link human and non-human sources of Salmonella. XII International Society for Veterinary Epidemiology and Economics Conference. http://www.who.int/gfn/activities/CDB_poster_Sept09.pdf
  52. Waterman, S. R. & Holden, D. W. ( 2003; ). Functions and effectors of the Salmonella pathogenicity island 2 type III secretion system. Cell Microbiol 5, 501–511.[CrossRef]
    [Google Scholar]
  53. White, A. P., Allen-Vercoe, E., Jones, B. W., DeVinney, R., Kay, W. W. & Surette, M. G. ( 2007; ). An efficient system for markerless gene replacement applicable in a wide variety of enterobacterial species. Can J Microbiol 53, 56–62.[CrossRef]
    [Google Scholar]
  54. Wigley, P., Jones, M. A. & Barrow, P. A. ( 2002; ). Salmonella enterica serovar Pullorum requires the Salmonella pathogenicity island 2 type III secretion system for virulence and carriage in the chicken. Avian Pathol 31, 501–506.[CrossRef]
    [Google Scholar]
  55. Winstanley, C. & Hart, C. A. ( 2001; ). Type III secretion systems and pathogenicity islands. J Med Microbiol 50, 116–126.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.038018-0
Loading
/content/journal/micro/10.1099/mic.0.038018-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error