1887

Abstract

The startling increase in the occurrence of rifampicin (Rif) resistance in the clinical isolates of worldwide is posing a serious concern to tuberculosis management. The majority of Rif resistance in bacteria arises from mutations in the RpoB subunit of the RNA polymerase. We isolated strains harbouring either an insertion (6 aa) or a deletion (10 aa) in their RpoB proteins. Although these strains showed a compromised fitness for growth in 7H9 Middlebrook medium, their resistance to Rif was remarkably high. The attenuated growth of the strains correlated with decreased specific activities of the RNA polymerases from the mutants. While the RNA polymerases from the parent or a mutant strain (harbouring a frequently occurring mutation, H442Y, in RpoB) were susceptible to Rif-mediated inhibition of transcription from calf thymus DNA, those from the insertion and deletion mutants were essentially refractory to such inhibition. Three-dimensional structure modelling revealed that the RpoB amino acids that interact with Rif are either deleted or unable to interact with Rif due to their unsuitable spatial positioning in these mutants. We discuss possible uses of the RpoB mutants in studying transcriptional regulation in mycobacteria and as potential targets for drug design.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.036970-0
2010-05-01
2020-09-27
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/5/1565.html?itemId=/content/journal/micro/10.1099/mic.0.036970-0&mimeType=html&fmt=ahah

References

  1. Billington O. J., McHugh T. D., Gillespie S. H.. 1999; Physiological cost of rifampin resistance induced in vitro in Mycobacterium tuberculosis. Antimicrob Agents Chemother43:1866–1869
    [Google Scholar]
  2. Boshoff H. I., Reed M. B., Barry C. E. III, Mizrahi V.. 2003; DnaE2 polymerase contributes to in vivo survival and the emergence of drug resistance in Mycobacterium tuberculosis. Cell113:183–193
    [Google Scholar]
  3. Böttger E. C., Springer B., Pletschette M., Sander P.. 1998; Fitness of antibiotic-resistant microorganisms and compensatory mutations. Nat Med4:1343–1344
    [Google Scholar]
  4. Campbell E. A., Korzheva N., Mustaev A., Murakami K., Nair S., Goldfarb A., Darst S. A.. 2001; Structural mechanism for rifampicin inhibition of bacterial RNA polymerase. Cell104:901–912
    [Google Scholar]
  5. Campbell E. A., Pavlova O., Zenkin N., Leon F., Irschik H., Jansen R., Severinov K., Darst S. A.. 2005; Structural, functional, and genetic analysis of sorangicin inhibition of bacterial RNA polymerase. EMBO J24:674–682
    [Google Scholar]
  6. Cole S. T.. 1996; Rifamycin resistance in mycobacteria. Res Microbiol147:48–52
    [Google Scholar]
  7. Evans S. V.. 1993; SETOR: hardware-lighted three-dimensional solid model representations of macromolecules. J Mol Graph11:134–138
    [Google Scholar]
  8. Garibyan L., Huang T., Kim M., Wolff E., Nguyen A., Nguyen T., Diep A., Hu K., Iverson A.. other authors 2003; Use of the rpoB gene to determine the specificity of base substitution mutations on the Escherichia coli chromosome. DNA Repair (Amst2:593–608
    [Google Scholar]
  9. Henkin T. M.. 2000; Transcription termination control in bacteria. Curr Opin Microbiol3:149–153
    [Google Scholar]
  10. Herrera L., Jimenez S., Valverde A., Garcia-Aranda M. A., Saez-Nieto J. A.. 2003; Molecular analysis of rifampicin-resistant Mycobacterium tuberculosis isolated in Spain (1996–2001). Description of new mutations in the rpoB gene and review of the literature. Int J Antimicrob Agents21:403–408
    [Google Scholar]
  11. Hershberg R., Lipatov M., Small P. M., Sheffer H., Niemann S., Homolka S., Roach J. C., Kremer K., Petrov D. A.. other authors 2008; High functional diversity in Mycobacterium tuberculosis driven by genetic drift and human demography. PLoS Biol6:e311
    [Google Scholar]
  12. Hetherington S. V., Watson A. S., Patrick C. C.. 1995; Sequence and analysis of the rpoB gene of Mycobacterium smegmatis. Antimicrob Agents Chemother39:2164–2166
    [Google Scholar]
  13. Hinkle D. C., Mangel W. F., Chamberlin M. J.. 1972; Studies of the binding of Escherichia coli RNA polymerase to DNA. IV. The effect of rifampicin on binding and on RNA chain initiation. J Mol Biol70:209–220
    [Google Scholar]
  14. Hu Y., Mangan J. A., Dhillon J., Sole K. M., Mitchison D. A., Butcher P. D., Coates A. R.. 2000; Detection of mRNA transcripts and active transcription in persistent Mycobacterium tuberculosis induced by exposure to rifampin or pyrazinamide. J Bacteriol182:6358–6365
    [Google Scholar]
  15. Huitric E., Werngren J., Jureen P., Hoffner S.. 2006; Resistance levels and rpoB gene mutations among in vitro-selected rifampin-resistant Mycobacterium tuberculosis mutants. Antimicrob Agents Chemother50:2860–2862
    [Google Scholar]
  16. Jain R., Kumar P., Varshney U.. 2007; A distinct role of formamidopyrimidine DNA glycosylase (MutM) in down-regulation of accumulation of G, C mutations and protection against oxidative stress in mycobacteria. DNA Repair (Amst6:1774–1785
    [Google Scholar]
  17. Jin D. J., Gross C. A.. 1988; Mapping and sequencing of mutations in the Escherichia coli rpoB gene that lead to rifampicin resistance. J Mol Biol202:45–58
    [Google Scholar]
  18. Jin D. J., Cashel M., Friedman D. I., Nakamura Y., Walter W. A., Gross C. A.. 1988; Effects of rifampicin resistant rpoB mutations on antitermination and interaction with nusA in Escherichia coli. J Mol Biol204:247–261
    [Google Scholar]
  19. Levin M. E., Hatfull G. F.. 1993; Mycobacterium smegmatis RNA polymerase: DNA supercoiling, action of rifampicin and mechanism of rifampicin resistance. Mol Microbiol8:277–285
    [Google Scholar]
  20. Malshetty V. S., Jain R., Srinath T., Kurthkoti K., Varshney U.. 2010; Synergistic effects of UdgB and Ung in mutation prevention and protection against commonly encountered DNA damaging agents in Mycobacterium smegmatis. Microbiology156:940–949
    [Google Scholar]
  21. Mariam D. H., Mengistu Y., Hoffner S. E., Andersson D. I.. 2004; Effect of rpoB mutations conferring rifampin resistance on fitness of Mycobacterium tuberculosis. Antimicrob Agents Chemother48:1289–1294
    [Google Scholar]
  22. McClure W. R., Cech C. L.. 1978; On the mechanism of rifampicin inhibition of RNA synthesis. J Biol Chem253:8949–8956
    [Google Scholar]
  23. Ohno H., Koga H., Kohno S., Tashiro T., Hara K.. 1996; Relationship between rifampin MICs for and rpoB mutations of Mycobacterium tuberculosis strains isolated in Japan. Antimicrob Agents Chemother40:1053–1056
    [Google Scholar]
  24. Reed K. C., Mann D. A.. 1985; Rapid transfer of DNA from agarose gels to nylon membranes. Nucleic Acids Res13:7207–7221
    [Google Scholar]
  25. Rodrigue S., Provvedi R., Jacques P. E., Gaudreau L., Manganelli R.. 2006; The sigma factors of Mycobacterium tuberculosis. FEMS Microbiol Rev30:926–941
    [Google Scholar]
  26. Sambrook J., Fritsch E. F., Maniatis T.. 1989; Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  27. Sander P., Springer B., Prammananan T., Sturmfels A., Kappler M., Pletschette M., Böttger E. C.. 2002; Fitness cost of chromosomal drug resistance-conferring mutations. Antimicrob Agents Chemother46:1204–1211
    [Google Scholar]
  28. Smith I., Bishai W. R., Nagaraja V.. 2005; Control of Mycobacterial Transcription Washington, DC: American Society for Microbiology;
  29. Snapper S. B., Melton R. E., Mustafa S., Kieser T., Jacobs W. R. Jr. 1990; Isolation and characterization of efficient plasmid transformation mutants of Mycobacterium smegmatis. Mol Microbiol4:1911–1919
    [Google Scholar]
  30. Srinivasan N., Blundell T. L.. 1993; An evaluation of the performance of an automated procedure for comparative modelling of protein tertiary structure. Protein Eng6:501–512
    [Google Scholar]
  31. Stover C. K., de la Cruz V. F., Fuerst T. R., Burlein J. E., Benson L. A., Bennett L. T., Bansal G. P., Young J. F., Lee M. H.. other authors 1991; New use of BCG for recombinant vaccines. Nature351:456–460
    [Google Scholar]
  32. Sutcliffe M. J., Hayes F. R., Blundell T. L.. 1987; Knowledge based modelling of homologous proteins, Part II: Rules for the conformations of substituted sidechains. Protein Eng1:385–392
    [Google Scholar]
  33. Taniguchi H., Aramaki H., Nikaido Y., Mizuguchi Y., Nakamura M., Koga T., Yoshida S.. 1996; Rifampicin resistance and mutation of the rpoB gene in Mycobacterium tuberculosis. FEMS Microbiol Lett144:103–108
    [Google Scholar]
  34. Topham C. M., McLeod A., Eisenmenger F., Overington J. P., Johnson M. S., Blundell T. L.. 1993; Fragment ranking in modelling of protein structure. Conformationally constrained environmental amino acid substitution tables. J Mol Biol229:194–220
    [Google Scholar]
  35. Unniraman S., Chatterji M., Nagaraja V.. 2002; DNA gyrase genes in Mycobacterium tuberculosis: a single operon driven by multiple promoters. J Bacteriol184:5449–5456
    [Google Scholar]
  36. Vasanthakrishna M., Kumar N. V., Varshney U.. 1997; Characterization of the initiator tRNA gene locus and identification of a strong promoter from Mycobacterium tuberculosis. Microbiology143:3591–3598
    [Google Scholar]
  37. Venkatesh J., Kumar P., Krishna P. S., Manjunath R., Varshney U.. 2003; Importance of uracil DNA glycosylase in Pseudomonas aeruginosa and Mycobacterium smegmatis, G+C-rich bacteria, in mutation prevention, tolerance to acidified nitrite, and endurance in mouse macrophages. J Biol Chem278:24350–24358
    [Google Scholar]
  38. Waagmeester A., Thompson J., Reyrat J. M.. 2005; Identifying sigma factors in Mycobacterium smegmatis by comparative genomic analysis. Trends Microbiol13:505–509
    [Google Scholar]
  39. Wegrzyn A., Szalewska-Palasz A., Blaszczak A., Liberek K., Wegrzyn G.. 1998; Differential inhibition of transcription from σ70- and σ32-dependent promoters by rifampicin. FEBS Lett440:172–174
    [Google Scholar]
  40. Weiner S. J., Kollman P. A., Case D. A., Singh U. C., Ghio C., Alagona G., Profeta S., Weiner P.. 1984; A new force field for molecular mechanical simulation of nucleic acids and proteins. J Am Chem Soc106:765–784
    [Google Scholar]
  41. Yanofsky C., Horn V.. 1981; Rifampin resistance mutations that alter the efficiency of transcription termination at the tryptophan operon attenuator. J Bacteriol145:1334–1341
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.036970-0
Loading
/content/journal/micro/10.1099/mic.0.036970-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error