1887

Abstract

The startling increase in the occurrence of rifampicin (Rif) resistance in the clinical isolates of worldwide is posing a serious concern to tuberculosis management. The majority of Rif resistance in bacteria arises from mutations in the RpoB subunit of the RNA polymerase. We isolated strains harbouring either an insertion (6 aa) or a deletion (10 aa) in their RpoB proteins. Although these strains showed a compromised fitness for growth in 7H9 Middlebrook medium, their resistance to Rif was remarkably high. The attenuated growth of the strains correlated with decreased specific activities of the RNA polymerases from the mutants. While the RNA polymerases from the parent or a mutant strain (harbouring a frequently occurring mutation, H442Y, in RpoB) were susceptible to Rif-mediated inhibition of transcription from calf thymus DNA, those from the insertion and deletion mutants were essentially refractory to such inhibition. Three-dimensional structure modelling revealed that the RpoB amino acids that interact with Rif are either deleted or unable to interact with Rif due to their unsuitable spatial positioning in these mutants. We discuss possible uses of the RpoB mutants in studying transcriptional regulation in mycobacteria and as potential targets for drug design.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.036970-0
2010-05-01
2019-12-13
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/5/1565.html?itemId=/content/journal/micro/10.1099/mic.0.036970-0&mimeType=html&fmt=ahah

References

  1. Billington, O. J., McHugh, T. D. & Gillespie, S. H. ( 1999; ). Physiological cost of rifampin resistance induced in vitro in Mycobacterium tuberculosis. Antimicrob Agents Chemother 43, 1866–1869.
    [Google Scholar]
  2. Boshoff, H. I., Reed, M. B., Barry, C. E., III & Mizrahi, V. ( 2003; ). DnaE2 polymerase contributes to in vivo survival and the emergence of drug resistance in Mycobacterium tuberculosis. Cell 113, 183–193.[CrossRef]
    [Google Scholar]
  3. Böttger, E. C., Springer, B., Pletschette, M. & Sander, P. ( 1998; ). Fitness of antibiotic-resistant microorganisms and compensatory mutations. Nat Med 4, 1343–1344.[CrossRef]
    [Google Scholar]
  4. Campbell, E. A., Korzheva, N., Mustaev, A., Murakami, K., Nair, S., Goldfarb, A. & Darst, S. A. ( 2001; ). Structural mechanism for rifampicin inhibition of bacterial RNA polymerase. Cell 104, 901–912.[CrossRef]
    [Google Scholar]
  5. Campbell, E. A., Pavlova, O., Zenkin, N., Leon, F., Irschik, H., Jansen, R., Severinov, K. & Darst, S. A. ( 2005; ). Structural, functional, and genetic analysis of sorangicin inhibition of bacterial RNA polymerase. EMBO J 24, 674–682.[CrossRef]
    [Google Scholar]
  6. Cole, S. T. ( 1996; ). Rifamycin resistance in mycobacteria. Res Microbiol 147, 48–52.[CrossRef]
    [Google Scholar]
  7. Evans, S. V. ( 1993; ). SETOR: hardware-lighted three-dimensional solid model representations of macromolecules. J Mol Graph 11, 134–138.[CrossRef]
    [Google Scholar]
  8. Garibyan, L., Huang, T., Kim, M., Wolff, E., Nguyen, A., Nguyen, T., Diep, A., Hu, K., Iverson, A. & other authors ( 2003; ). Use of the rpoB gene to determine the specificity of base substitution mutations on the Escherichia coli chromosome. DNA Repair (Amst) 2, 593–608.[CrossRef]
    [Google Scholar]
  9. Henkin, T. M. ( 2000; ). Transcription termination control in bacteria. Curr Opin Microbiol 3, 149–153.[CrossRef]
    [Google Scholar]
  10. Herrera, L., Jimenez, S., Valverde, A., Garcia-Aranda, M. A. & Saez-Nieto, J. A. ( 2003; ). Molecular analysis of rifampicin-resistant Mycobacterium tuberculosis isolated in Spain (1996–2001). Description of new mutations in the rpoB gene and review of the literature. Int J Antimicrob Agents 21, 403–408.[CrossRef]
    [Google Scholar]
  11. Hershberg, R., Lipatov, M., Small, P. M., Sheffer, H., Niemann, S., Homolka, S., Roach, J. C., Kremer, K., Petrov, D. A. & other authors ( 2008; ). High functional diversity in Mycobacterium tuberculosis driven by genetic drift and human demography. PLoS Biol 6, e311 [CrossRef]
    [Google Scholar]
  12. Hetherington, S. V., Watson, A. S. & Patrick, C. C. ( 1995; ). Sequence and analysis of the rpoB gene of Mycobacterium smegmatis. Antimicrob Agents Chemother 39, 2164–2166.[CrossRef]
    [Google Scholar]
  13. Hinkle, D. C., Mangel, W. F. & Chamberlin, M. J. ( 1972; ). Studies of the binding of Escherichia coli RNA polymerase to DNA. IV. The effect of rifampicin on binding and on RNA chain initiation. J Mol Biol 70, 209–220.[CrossRef]
    [Google Scholar]
  14. Hu, Y., Mangan, J. A., Dhillon, J., Sole, K. M., Mitchison, D. A., Butcher, P. D. & Coates, A. R. ( 2000; ). Detection of mRNA transcripts and active transcription in persistent Mycobacterium tuberculosis induced by exposure to rifampin or pyrazinamide. J Bacteriol 182, 6358–6365.[CrossRef]
    [Google Scholar]
  15. Huitric, E., Werngren, J., Jureen, P. & Hoffner, S. ( 2006; ). Resistance levels and rpoB gene mutations among in vitro-selected rifampin-resistant Mycobacterium tuberculosis mutants. Antimicrob Agents Chemother 50, 2860–2862.[CrossRef]
    [Google Scholar]
  16. Jain, R., Kumar, P. & Varshney, U. ( 2007; ). A distinct role of formamidopyrimidine DNA glycosylase (MutM) in down-regulation of accumulation of G, C mutations and protection against oxidative stress in mycobacteria. DNA Repair (Amst) 6, 1774–1785.[CrossRef]
    [Google Scholar]
  17. Jin, D. J. & Gross, C. A. ( 1988; ). Mapping and sequencing of mutations in the Escherichia coli rpoB gene that lead to rifampicin resistance. J Mol Biol 202, 45–58.[CrossRef]
    [Google Scholar]
  18. Jin, D. J., Cashel, M., Friedman, D. I., Nakamura, Y., Walter, W. A. & Gross, C. A. ( 1988; ). Effects of rifampicin resistant rpoB mutations on antitermination and interaction with nusA in Escherichia coli. J Mol Biol 204, 247–261.[CrossRef]
    [Google Scholar]
  19. Levin, M. E. & Hatfull, G. F. ( 1993; ). Mycobacterium smegmatis RNA polymerase: DNA supercoiling, action of rifampicin and mechanism of rifampicin resistance. Mol Microbiol 8, 277–285.[CrossRef]
    [Google Scholar]
  20. Malshetty, V. S., Jain, R., Srinath, T., Kurthkoti, K. & Varshney, U. ( 2010; ). Synergistic effects of UdgB and Ung in mutation prevention and protection against commonly encountered DNA damaging agents in Mycobacterium smegmatis. Microbiology 156, 940–949.[CrossRef]
    [Google Scholar]
  21. Mariam, D. H., Mengistu, Y., Hoffner, S. E. & Andersson, D. I. ( 2004; ). Effect of rpoB mutations conferring rifampin resistance on fitness of Mycobacterium tuberculosis. Antimicrob Agents Chemother 48, 1289–1294.[CrossRef]
    [Google Scholar]
  22. McClure, W. R. & Cech, C. L. ( 1978; ). On the mechanism of rifampicin inhibition of RNA synthesis. J Biol Chem 253, 8949–8956.
    [Google Scholar]
  23. Ohno, H., Koga, H., Kohno, S., Tashiro, T. & Hara, K. ( 1996; ). Relationship between rifampin MICs for and rpoB mutations of Mycobacterium tuberculosis strains isolated in Japan. Antimicrob Agents Chemother 40, 1053–1056.
    [Google Scholar]
  24. Reed, K. C. & Mann, D. A. ( 1985; ). Rapid transfer of DNA from agarose gels to nylon membranes. Nucleic Acids Res 13, 7207–7221.[CrossRef]
    [Google Scholar]
  25. Rodrigue, S., Provvedi, R., Jacques, P. E., Gaudreau, L. & Manganelli, R. ( 2006; ). The sigma factors of Mycobacterium tuberculosis. FEMS Microbiol Rev 30, 926–941.[CrossRef]
    [Google Scholar]
  26. Sambrook, J., Fritsch E. F. amp; Maniatis,&, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  27. Sander, P., Springer, B., Prammananan, T., Sturmfels, A., Kappler, M., Pletschette, M. & Böttger, E. C. ( 2002; ). Fitness cost of chromosomal drug resistance-conferring mutations. Antimicrob Agents Chemother 46, 1204–1211.[CrossRef]
    [Google Scholar]
  28. Smith, I., Bishai, W. R. & Nagaraja, V. ( 2005; ). Control of Mycobacterial Transcription. Washington, DC: American Society for Microbiology.
  29. Snapper, S. B., Melton, R. E., Mustafa, S., Kieser, T. & Jacobs, W. R., Jr ( 1990; ). Isolation and characterization of efficient plasmid transformation mutants of Mycobacterium smegmatis. Mol Microbiol 4, 1911–1919.[CrossRef]
    [Google Scholar]
  30. Srinivasan, N. & Blundell, T. L. ( 1993; ). An evaluation of the performance of an automated procedure for comparative modelling of protein tertiary structure. Protein Eng 6, 501–512.[CrossRef]
    [Google Scholar]
  31. Stover, C. K., de la Cruz, V. F., Fuerst, T. R., Burlein, J. E., Benson, L. A., Bennett, L. T., Bansal, G. P., Young, J. F., Lee, M. H. & other authors ( 1991; ). New use of BCG for recombinant vaccines. Nature 351, 456–460.[CrossRef]
    [Google Scholar]
  32. Sutcliffe, M. J., Hayes, F. R. & Blundell, T. L. ( 1987; ). Knowledge based modelling of homologous proteins, Part II: Rules for the conformations of substituted sidechains. Protein Eng 1, 385–392.[CrossRef]
    [Google Scholar]
  33. Taniguchi, H., Aramaki, H., Nikaido, Y., Mizuguchi, Y., Nakamura, M., Koga, T. & Yoshida, S. ( 1996; ). Rifampicin resistance and mutation of the rpoB gene in Mycobacterium tuberculosis. FEMS Microbiol Lett 144, 103–108.[CrossRef]
    [Google Scholar]
  34. Topham, C. M., McLeod, A., Eisenmenger, F., Overington, J. P., Johnson, M. S. & Blundell, T. L. ( 1993; ). Fragment ranking in modelling of protein structure. Conformationally constrained environmental amino acid substitution tables. J Mol Biol 229, 194–220.[CrossRef]
    [Google Scholar]
  35. Unniraman, S., Chatterji, M. & Nagaraja, V. ( 2002; ). DNA gyrase genes in Mycobacterium tuberculosis: a single operon driven by multiple promoters. J Bacteriol 184, 5449–5456.[CrossRef]
    [Google Scholar]
  36. Vasanthakrishna, M., Kumar, N. V. & Varshney, U. ( 1997; ). Characterization of the initiator tRNA gene locus and identification of a strong promoter from Mycobacterium tuberculosis. Microbiology 143, 3591–3598.[CrossRef]
    [Google Scholar]
  37. Venkatesh, J., Kumar, P., Krishna, P. S., Manjunath, R. & Varshney, U. ( 2003; ). Importance of uracil DNA glycosylase in Pseudomonas aeruginosa and Mycobacterium smegmatis, G+C-rich bacteria, in mutation prevention, tolerance to acidified nitrite, and endurance in mouse macrophages. J Biol Chem 278, 24350–24358.[CrossRef]
    [Google Scholar]
  38. Waagmeester, A., Thompson, J. & Reyrat, J. M. ( 2005; ). Identifying sigma factors in Mycobacterium smegmatis by comparative genomic analysis. Trends Microbiol 13, 505–509.[CrossRef]
    [Google Scholar]
  39. Wegrzyn, A., Szalewska-Palasz, A., Blaszczak, A., Liberek, K. & Wegrzyn, G. ( 1998; ). Differential inhibition of transcription from σ 70- and σ 32-dependent promoters by rifampicin. FEBS Lett 440, 172–174.[CrossRef]
    [Google Scholar]
  40. Weiner, S. J., Kollman, P. A., Case, D. A., Singh, U. C., Ghio, C., Alagona, G., Profeta, S. & Weiner, P. ( 1984; ). A new force field for molecular mechanical simulation of nucleic acids and proteins. J Am Chem Soc 106, 765–784.[CrossRef]
    [Google Scholar]
  41. Yanofsky, C. & Horn, V. ( 1981; ). Rifampin resistance mutations that alter the efficiency of transcription termination at the tryptophan operon attenuator. J Bacteriol 145, 1334–1341.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.036970-0
Loading
/content/journal/micro/10.1099/mic.0.036970-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error