1887

Abstract

Recent advances in various ‘omics’ technologies enable quantitative monitoring of the abundance of various biological molecules in a high-throughput manner, and thus allow determination of their variation between different biological states on a genomic scale. Several popular ‘omics’ platforms that have been used in microbial systems biology include transcriptomics, which measures mRNA transcript levels; proteomics, which quantifies protein abundance; metabolomics, which determines abundance of small cellular metabolites; interactomics, which resolves the whole set of molecular interactions in cells; and fluxomics, which establishes dynamic changes of molecules within a cell over time. However, no single ‘omics’ analysis can fully unravel the complexities of fundamental microbial biology. Therefore, integration of multiple layers of information, the multi-‘omics’ approach, is required to acquire a precise picture of living micro-organisms. In spite of this being a challenging task, some attempts have been made recently to integrate heterogeneous ‘omics’ datasets in various microbial systems and the results have demonstrated that the multi-‘omics’ approach is a powerful tool for understanding the functional principles and dynamics of total cellular systems. This article reviews some basic concepts of various experimental ‘omics’ approaches, recent application of the integrated ‘omics’ for exploring metabolic and regulatory mechanisms in microbes, and advances in computational and statistical methodologies associated with integrated ‘omics’ analyses. Online databases and bioinformatic infrastructure available for integrated ‘omics’ analyses are also briefly discussed.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.034793-0
2010-02-01
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/2/287.html?itemId=/content/journal/micro/10.1099/mic.0.034793-0&mimeType=html&fmt=ahah

References

  1. Adler, P., Reimand, J., Jänes, J., Kolde, R., Peterson, H. & Vilo, J. ( 2008; ). EGGanim: pathway animations for high-throughput data. Bioinformatics 24, 588–590.[CrossRef]
    [Google Scholar]
  2. Alter, O. & Golub, G. H. ( 2004; ). Integrative analysis of genomescale data by using pseudoinverse projection predicts novel correlation between DNA replication and RNA transcription. Proc Natl Acad Sci U S A 101, 16577–16582.[CrossRef]
    [Google Scholar]
  3. Askenazi, M., Driggers, E. M., Holtzman, D. A., Norman, T. C., Iverson, S., Zimmer, D. P., Boers, M. E., Blomquist, P. R., Martinez, E. J. & other authors ( 2003; ). Integrating transcriptional and metabolite profiles to direct the engineering of lovastatin-producing fungal strains. Nat Biotechnol 21, 150–156.[CrossRef]
    [Google Scholar]
  4. Aubert, C., Leroy, G., Bianco, P., Forest, E., Bruschi, M. & Dolla, A. ( 1998; ). Characterization of the cytochromes c from Desulfovibrio desulfuricans G201. Biochem Biophys Res Commun 242, 213–218.[CrossRef]
    [Google Scholar]
  5. Baggerman, G., Vierstraete, E., De Loof, A. & Schoofs, L. ( 2005; ). Gel-based versus gel-free proteomics: a review. Comb Chem High Throughput Screen 8, 669–677.[CrossRef]
    [Google Scholar]
  6. Beyer, A., Hollunder, J., Nasheuer, H. P. & Wilhelm, T. ( 2004; ). Post-transcriptional expression regulation in the yeast Saccharomyces cerevisiae on a genomic scale. Mol Cell Proteomics 3, 1083–1092.[CrossRef]
    [Google Scholar]
  7. Boone, C., Bussey, H. & Andrews, B. J. ( 2007; ). Exploring genetic interactions and networks with yeast. Nat Rev Genet 8, 437–449.[CrossRef]
    [Google Scholar]
  8. Brockmann, R., Beyer, A., Heinisch, J. J. & Wilhelm, T. ( 2007; ). Posttranscriptional expression regulation: what determines translation rates? PLOS Comput Biol 3, e57 [CrossRef]
    [Google Scholar]
  9. Brown, S. D., Thompson, M. R., Verberkmoes, N. C., Chourey, K., Shah, M., Zhou, J., Hettich, R. L. & Thompson, D. K. ( 2006; ). Molecular dynamics of the Shewanella oneidensis response to chromate stress. Mol Cell Proteomics 5, 1054–1071.[CrossRef]
    [Google Scholar]
  10. Bruscella, P., Eraso, J. M., Roh, J. H. & Kaplan, S. ( 2008; ). The use of chromatin immunoprecipitation to define PpsR binding activity in Rhodobacter sphaeroides 2.4.1. J Bacteriol 190, 6817–6828.[CrossRef]
    [Google Scholar]
  11. Budde, I., Steil, L., Scharf, C., Völker, U. & Bremer, E. ( 2006; ). Adaptation of Bacillus subtilis to growth at low temperature: a combined transcriptomic and proteomic appraisal. Microbiology 152, 831–853.[CrossRef]
    [Google Scholar]
  12. Butland, G., Peregrín-Alvarez, J. M., Li, J., Yang, W., Yang, X., Canadien, V., Starostine, A., Richards, D., Beattie, B. & other authors ( 2005; ). Interaction network containing conserved and essential protein complexes in Escherichia coli. Nature 433, 531–537.[CrossRef]
    [Google Scholar]
  13. Butland, G., Babu, M., Díaz-Mejía, J. J., Bohdana, F., Phanse, S., Gold, B., Yang, W., Li, J., Gagarinova, A. G. & other authors ( 2008; ). eSGA: E. coli synthetic genetic array analysis. Nat Methods 5, 789–795.[CrossRef]
    [Google Scholar]
  14. Cardenas, E. & Tiedje, J. M. ( 2008; ). New tools for discovering and characterizing microbial diversity. Curr Opin Biotechnol 19, 544–549.[CrossRef]
    [Google Scholar]
  15. Cascante, M. & Marin, S. ( 2008; ). Metabolomics and fluxomics approaches. Essays Biochem 45, 67–82.[CrossRef]
    [Google Scholar]
  16. Cash, P. ( 2000; ). Proteomics in medical microbiology. Electrophoresis 21, 1187–1201.[CrossRef]
    [Google Scholar]
  17. Castrillo, J. I., Hayes, A., Mohammed, S., Gaskell, S. J. & Oliver, S. G. ( 2003; ). An optimized protocol for metabolome analysis in yeast using direct infusion electrospray mass spectrometry. Phytochemistry 62, 929–937.[CrossRef]
    [Google Scholar]
  18. Chen, S. & Wilson, D. B. ( 2007; ). Proteomic and transcriptomic analysis of extracellular proteins and mRNA levels in Thermobifida fusca grown on cellobiose and glucose. J Bacteriol 189, 6260–6265.[CrossRef]
    [Google Scholar]
  19. Corbin, R. W., Paliy, O., Yang, F., Shabanowitz, J., Platt, M., Lyons, C. E., Jr, Root, K., McAuliffe, J., Jordan, M. I. & other authors ( 2003; ). Toward a protein profile of Escherichia coli: comparison to its transcription profile. Proc Natl Acad Sci U S A 100, 9232–9237.[CrossRef]
    [Google Scholar]
  20. De Keersmaecker, S. C., Thijs, I. M., Vanderleyden, J. & Marchal, K. ( 2006; ). Integration of omics data: how well does it work for bacteria? Mol Microbiol 62, 1239–1250.[CrossRef]
    [Google Scholar]
  21. Depuydt, S., Trenkamp, S., Fernie, A. R., Elftieh, S., Renou, J. P., Vuylsteke, M., Holsters, M. & Vereecke, D. ( 2009; ). An integrated genomics approach to define niche establishment by Rhodococcus fascians. Plant Physiol 149, 1366–1386.[CrossRef]
    [Google Scholar]
  22. Díaz-Mejía, J. J., Babu, M. & Emili, A. ( 2009; ). Computational and experimental approaches to chart the Escherichia coli cell-envelope-associated proteome and interactome. FEMS Microbiol Rev 33, 66–97.[CrossRef]
    [Google Scholar]
  23. Dunn, W. B. ( 2008; ). Current trends and future requirements for the mass spectrometric investigation of microbial, mammalian and plant metabolomes. Phys Biol 5, 11001 [CrossRef]
    [Google Scholar]
  24. Dunn, W. B., Bailey, N. J. & Johnson, H. E. ( 2005; ). Measuring the metabolome: current analytical technologies. Analyst 130, 606–625.[CrossRef]
    [Google Scholar]
  25. Elias, D. A., Mukhopadhyay, A., Joachimiak, M. P., Drury, E. C., Redding, A. M., Yen, H. C., Fields, M. W., Hazen, T. C., Arkin, A. P. & other authors ( 2009; ). Expression profiling of hypothetical genes in Desulfovibrio vulgaris leads to improved functional annotation. Nucleic Acids Res 37, 2926–2939.[CrossRef]
    [Google Scholar]
  26. Engels, V., Lindner, S. N. & Wendisch, V. F. ( 2008; ). The global repressor SugR controls expression of genes of glycolysis and of the l-lactate dehydrogenase LdhA in Corynebacterium glutamicum. J Bacteriol 190, 8033–8044.[CrossRef]
    [Google Scholar]
  27. Fagan, A., Culhane, A. C. & Higgins, D. G. ( 2007; ). A multivariate analysis approach to the integration of proteomic and gene expression data. Proteomics 7, 2162–2171.[CrossRef]
    [Google Scholar]
  28. Fan, J. & Li, R. ( 2001; ). Variable selection via nonconcave penalized likelihood and its oracle properties. J Am Stat Assoc 96, 1348–1360.[CrossRef]
    [Google Scholar]
  29. Faria-Campos, A. C., Gomes, R. R., Moratelli, F. S., Rausch-Fernandes, H., Franco, G. R. & Campos, S. V. ( 2007; ). BNDb – Biomolecules Nucleus Database: an integrated proteomics and transcriptomics database. Genet Mol Res 6, 937–945.
    [Google Scholar]
  30. Fiehn, O. ( 2001; ). Combining genomics, metabolome analysis, and biochemical modelling to understand metabolic networks. Comp Funct Genomics 2, 155–168.[CrossRef]
    [Google Scholar]
  31. Forster, J., Gombert, A. K. & Nielsen, J. ( 2002; ). A functional genomics approach using metabolomics and in silico pathway analysis. Biotechnol Bioeng 79, 703–712.[CrossRef]
    [Google Scholar]
  32. Fraser, C. M. & Rappuoli, R. ( 2005; ). Application of microbial genomic science to advanced therapeutics. Annu Rev Med 56, 459–474.[CrossRef]
    [Google Scholar]
  33. Frias-Lopez, J., Shi, Y., Tyson, G. W., Coleman, M. L., Schuster, S. C., Chisholm, S. W. & Delong, E. F. ( 2008; ). Microbial community gene expression in ocean surface waters. Proc Natl Acad Sci U S A 105, 3805–3810.[CrossRef]
    [Google Scholar]
  34. Gao, W., Liu, Y., Giometti, C. S., Tollaksen, S. L., Khare, T., Wu, L., Klingeman, D. M., Fields, M. W. & Zhou, J. ( 2006; ). Knock-out of SO1377 gene, which encodes the member of a conserved hypothetical bacterial protein family COG2268, results in alteration of iron metabolism, increased spontaneous mutation and hydrogen peroxide sensitivity in Shewanella oneidensis MR-1. BMC Genomics 7, 76 [CrossRef]
    [Google Scholar]
  35. Garcia, D. E., Baidoo, E. E., Benke, P. I., Pingitore, F., Tang, Y. J., Villa, S. & Keasling, J. D. ( 2008; ). Separation and mass spectrometry in microbial metabolomics. Curr Opin Microbiol 11, 233–239.[CrossRef]
    [Google Scholar]
  36. Gilbert, J. A., Field, D., Huang, Y., Edwards, R., Li, W., Gilna, P. & Joint, I. ( 2008; ). Detection of large numbers of novel sequences in the metatranscriptomes of complex marine microbial communities. PLoS One 3, e3042 [CrossRef]
    [Google Scholar]
  37. Gingras, A. C., Aebersold, R. & Raught, B. ( 2005; ). Advances in protein complex analysis using mass spectrometry. J Physiol 563, 11–21.[CrossRef]
    [Google Scholar]
  38. Gonzalo-Asensio, J., Mostowy, S., Harders-Westerveen, J., Huygen, K., Hernández-Pando, R., Thole, J., Behr, M., Gicquel, B. & Martín, C. ( 2008; ). PhoP: a missing piece in the intricate puzzle of Mycobacterium tuberculosis virulence. PLoS One 3, e3496 [CrossRef]
    [Google Scholar]
  39. Graham, R. L. J., Graham, C. & McMullan, G. ( 2007; ). Microbial proteomics: a mass spectrometry primer for biologists. Microb Cell Fact 6, 26 [CrossRef]
    [Google Scholar]
  40. Grainger, D. C., Overton, T. W., Reppas, N., Wade, J. T., Tamai, E., Hobman, J. L., Constantinidou, C., Struhl, K., Church, G. & Busby, S. J. ( 2004; ). Genomic studies with Escherichia coli MelR protein: applications of chromatin immunoprecipitation and microarrays. J Bacteriol 186, 6938–6943.[CrossRef]
    [Google Scholar]
  41. Greenbaum, D., Jansen, R. & Gerstein, M. ( 2002; ). Analysis of mRNA expression and protein abundance data: an approach for the comparison of the enrichment of features in the cellular population of proteins and transcripts. Bioinformatics 18, 585–596.[CrossRef]
    [Google Scholar]
  42. Gygi, S. P., Rochon, Y., Franza, B. R. & Aebersold, R. ( 1999; ). Correlation between protein and mRNA abundance in yeast. Mol Cell Biol 19, 1720–1730.
    [Google Scholar]
  43. Haqqani, A. S., Kelly, J. F. & Stanimirovic, D. B. ( 2008; ). Quantitative protein profiling by mass spectrometry using label-free proteomics. Methods Mol Biol 439, 241–256.
    [Google Scholar]
  44. Hegde, P. S., White, I. R. & Debouck, C. ( 2003; ). Interplay of transcriptomics and proteomics. Curr Opin Biotechnol 14, 647–651.[CrossRef]
    [Google Scholar]
  45. Herring, C. D., Raffaelle, M., Allen, T. E., Kanin, E. I., Landick, R., Ansari, A. Z. & Palsson, B. Ø. ( 2005; ). Immobilization of Escherichia coli RNA polymerase and location of binding sites by use of chromatin immunoprecipitation and microarrays. J Bacteriol 187, 6166–6174.[CrossRef]
    [Google Scholar]
  46. Hirai, M. Y., Klein, M., Fujikawa, Y., Yano, M., Goodenowe, B., Yamazaki, Y., Kanaya, S., Nakamura, Y., Kitayama, M. & other authors ( 2005; ). Elucidation of gene-to-gene and metabolite-to-gene networks in Arabidopsis by integration of metabolomics and transcriptomics. J Biol Chem 280, 25590–25595.[CrossRef]
    [Google Scholar]
  47. Hoefgen, R. & Nikiforova, V. J. ( 2008; ). Metabolomics integrated with transcriptomics: assessing systems response to sulfur-deficiency stress. Physiol Plant 132, 190–198.
    [Google Scholar]
  48. Horak, C. E. & Snyder, M. ( 2002; ). Global analysis of gene expression in yeast. Funct Integr Genomics 2, 171–180.[CrossRef]
    [Google Scholar]
  49. Hu, P., Janga, S. C., Babu, M., Díaz-Mejía, J. J., Butland, G., Yang, W., Pogoutse, O., Guo, X., Phanse, S. & other authors ( 2009; ). Global functional atlas of Escherichia coli encompassing previously uncharacterized proteins. PLoS Biol 7, e96 [CrossRef]
    [Google Scholar]
  50. Ideker, T., Thorsson, V., Ranish, J. A., Christmas, R., Buhler, J., Eng, J. K., Bumgarner, R., Goodlett, D. R., Aebersold, R. & Hood, L. ( 2001; ). Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. Science 292, 929–934.[CrossRef]
    [Google Scholar]
  51. Ishii, N. & Tomita, M. ( 2009; ). Multi-omics data-driven systems biology of E. coli. In Systems Biology and Biotechnology of Escherichia coli, pp. 41–57. Edited by S. Y. Lee, Dordrecht, Netherlands: Springer.
  52. Ishii, N., Nakahigashi, K., Baba, T., Robert, M., Soga, T., Kanai, A., Hirasawa, T., Naba, M., Hirai, K. & other authors ( 2007; ). Multiple high-throughput analyses monitor the response of E. coli to perturbations. Science 316, 593–597.[CrossRef]
    [Google Scholar]
  53. James, P. ( 1997; ). Protein identification in the post-genome era: the rapid rise of proteomics. Q Rev Biophys 30, 279–333.[CrossRef]
    [Google Scholar]
  54. Jayapal, K. P., Philp, R. J., Kok, Y. J., Yap, M. G., Sherman, D. H., Griffin, T. J. & Hu, W. S. ( 2008; ). Uncovering genes with divergent mRNA-protein dynamics in Streptomyces coelicolor. PLoS One 3, e2097 [CrossRef]
    [Google Scholar]
  55. Jennings, L. K., Chartrand, M. M., Lacrampe-Couloume, G., Lollar, B. S., Spain, J. C. & Gossett, J. M. ( 2009; ). Proteomic and transcriptomic analyses reveal genes upregulated by cis-dichloroethene in Polaromonas sp. strain JS666. Appl Environ Microbiol 75, 3733–3744.[CrossRef]
    [Google Scholar]
  56. Jones, A., Hunt, E., Wastling, J. M., Pizarro, A. & Stoeckert, C. J., Jr ( 2004; ). An object model and database for functional genomics. Bioinformatics 20, 1583–1590.[CrossRef]
    [Google Scholar]
  57. Joyce, A. R. & Palsson, B. O. ( 2006; ). The model organism as a system: integrating ‘omics’ data sets. Nat Rev Mol Cell Biol 7, 198–210.[CrossRef]
    [Google Scholar]
  58. Jurgen, B., Hanschke, R., Sarvas, M., Hecker, M. & Schweder, T. ( 2001; ). Proteome and transcriptome based analysis of Bacillus subtilis cells overproducing an insoluble heterologous protein. Appl Microbiol Biotechnol 55, 326–332.[CrossRef]
    [Google Scholar]
  59. Kagnoff, M. F. & Eckmann, L. ( 2001; ). Analysis of host responses to microbial infection using gene expression profiling. Curr Opin Microbiol 4, 246–250.[CrossRef]
    [Google Scholar]
  60. Kandpal, R., Saviola, B. & Felton, J. ( 2009; ). The era of omics unlimited. Biotechniques 46, 351–355.[CrossRef]
    [Google Scholar]
  61. Kell, D. B. ( 2004; ). Metabolomics and systems biology: making sense of the soup. Curr Opin Microbiol 7, 296–307.[CrossRef]
    [Google Scholar]
  62. Kim, J. G., Park, D., Kim, B. C., Cho, S. W., Kim, Y. T., Park, Y. J., Cho, H. J., Park, H., Kim, K. B. & other authors ( 2008; ). Predicting the interactome of Xanthomonas oryzae pathovar oryzae for target selection and DB service. BMC Bioinformatics 9, 41 [CrossRef]
    [Google Scholar]
  63. Krogan, N. J., Cagney, G., Yu, H., Zhong, G., Guo, X., Ignatchenko, A., Li, J., Pu, S., Datta, N. & other authors ( 2006; ). Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 440, 637–643.[CrossRef]
    [Google Scholar]
  64. Kromer, J. O., Sorgenfrei, O., Klopprogge, K., Heinzle, E. & Wittmann, C. ( 2004; ). In-depth profiling of lysine-producing Corynebacterium glutamicum by combined analysis of the transcriptome, metabolome, and fluxome. J Bacteriol 186, 1769–1784.[CrossRef]
    [Google Scholar]
  65. Kyrpides, N. C. ( 2009; ). Fifteen years of microbial genomics: meeting the challenges and fulfilling the dream. Nat Biotechnol 27, 627–632.[CrossRef]
    [Google Scholar]
  66. Lacerda, C. M. & Reardon, K. F. ( 2009; ). Environmental proteomics: applications of proteome profiling in environmental microbiology and biotechnology. Brief Funct Genomic Proteomic 8, 75–87.
    [Google Scholar]
  67. Lê Cao, K. A., Rossouw, D., Robert-Granié, C. & Besse, P. ( 2008; ). A sparse PLS for variable selection when integrating omics data. Stat Appl Genet Mol Biol 7, Article 35
    [Google Scholar]
  68. Lê Cao, K. A., Martin, P. B., Robert-Granié, C. & Besse, P. ( 2009; ). Sparse canonical methods for biological data integration: application to a cross-platform study. BMC Bioinformatics 10, 34 [CrossRef]
    [Google Scholar]
  69. Lee, J. H., Lee, D. E., Lee, B. U. & Kim, H. S. ( 2003; ). Global analyses of transcriptomes and proteomes of a parent strain and an l-threonine-overproducing mutant strain. J Bacteriol 185, 5442–5451.[CrossRef]
    [Google Scholar]
  70. Lin, J. & Qian, J. ( 2007; ). Systems biology approach to integrative comparative genomics. Expert Rev Proteomics 4, 107–119.[CrossRef]
    [Google Scholar]
  71. Mader, U., Homuth, G., Scharf, C., Buttner, K., Bode, R. & Hecker, M. ( 2002a; ). Transcriptome and proteome analysis of Bacillus subtilis gene expression modulated by amino acid availability. J Bacteriol 184, 4288–4295.[CrossRef]
    [Google Scholar]
  72. Mader, U., Antelmann, H., Buder, T., Dahl, M. K., Hecker, M. & Homuth, G. ( 2002b; ). Bacillus subtilis functional genomics: genome-wide analysis of the DegS-DegU regulon by transcriptomics and proteomics. Mol Genet Genomics 268, 455–467.[CrossRef]
    [Google Scholar]
  73. Maraziotis, I. A., Dimitrakopoulou, K. & Bezerianos, A. ( 2007; ). Growing functional modules from a seed protein via integration of protein interaction and gene expression data. BMC Bioinformatics 8, 408 [CrossRef]
    [Google Scholar]
  74. Martínez-Cruz, L. A., Rubio, A., Martínez-Chantar, M. L., Labarga, A., Barrio, I., Podhorski, A., Segura, V., Sevilla Campo, J. L., Avila, M. A. & Mato, J. M. ( 2003; ). GARBAN: genomic analysis and rapid biological annotation of cDNA microarray and proteomic data. Bioinformatics 19, 2158–2160.[CrossRef]
    [Google Scholar]
  75. May, P., Christian, J. O., Kempa, S. & Walther, D. ( 2009; ). ChlamyCyc: an integrative systems biology database and web-portal for Chlamydomonas reinhardtii. BMC Genomics 10, 209 [CrossRef]
    [Google Scholar]
  76. Medini, D., Serruto, D., Parkhill, J., Relman, D. A., Donati, C., Moxon, R., Falkow, S. & Rappuoli, R. ( 2008; ). Microbiology in the post-genomic era. Nat Rev Microbiol 6, 419–430.
    [Google Scholar]
  77. Mehra, A., Lee, K. H. & Hatzimanikatis, V. H. ( 2003; ). Insights into the relation between mRNA and protein expression patterns. I. Theoretical considerations. Biotechnol Bioeng 84, 822–833.[CrossRef]
    [Google Scholar]
  78. Misra, R. V., Horler, R. S., Reindl, W., Goryanin, I. I. & Thomas, G. H. ( 2005; ). EchoBASE: an integrated post-genomic database for Escherichia coli. Nucleic Acids Res 33, D329–D333.
    [Google Scholar]
  79. Missiuro, P. V., Liu, K., Zou, L., Ross, B. C., Zhao, G., Liu, J. S. & Ge, H. ( 2009; ). Information flow analysis of interactome networks. PLOS Comput Biol 5, e1000350 [CrossRef]
    [Google Scholar]
  80. Mogilevskaya, E., Bagrova, N., Plyusnina, T., Gizzatkulov, N., Metelkin, E., Goryacheva, E., Smirnov, S., Kosinsky, Y., Dorodnov, A. & other authors ( 2009; ). Kinetic modeling as a tool to integrate multilevel dynamic experimental data. Methods Mol Biol 563, 197–218.
    [Google Scholar]
  81. Mootha, V. K., Bunkenborg, J., Olsen, J. V., Hjerrild, M., Wisniewski, J. R., Stahl, E., Bolouri, M. S., Ray, H. N., Sihag, S. & other authors ( 2003a; ). Integrated analysis of protein composition, tissue diversity, and gene regulation in mouse mitochondria. Cell 115, 629–640.[CrossRef]
    [Google Scholar]
  82. Mootha, V. K., Lepage, P., Miller, K., Bunkenborg, J., Reich, M., Hjerrild, M., Del-monte, T., Villeneuve, A., Sladek, R. & other authors ( 2003b; ). Identification of a gene causing human cytochrome c oxidase deficiency by integrative genomics. Proc Natl Acad Sci U S A 100, 605–610.[CrossRef]
    [Google Scholar]
  83. Morgenthal, K., Weckwerth, W. & Steuer, R. ( 2006; ). Metabolomic networks in plants: Transitions from pattern recognition to biological interpretation. Biosytems 82, 108–117.
    [Google Scholar]
  84. Morgenthal, K., Wienkoop, S., Wolschin, F. & Weckwerth, W. ( 2007; ). Integrative profiling of metabolites and proteins: improving pattern recognition and biomarker selection for systems level approaches. Methods Mol Biol 358, 57–75.
    [Google Scholar]
  85. Mukhopadhyay, A., He, Z., Alm, E. J., Arkin, A. P., Baidoo, E. E., Borglin, S. C., Chen, W., Hazen, T. C., He, Q. & other authors ( 2006; ). Salt stress in Desulfovibrio vulgaris Hildenborough: an integrated genomics approach. J Bacteriol 188, 4068–4078.[CrossRef]
    [Google Scholar]
  86. Mukhopadhyay, A., Redding, A. M., Joachimiak, M. P., Arkin, A. P., Borglin, S. E., Dehal, P. S., Chakraborty, R., Geller, J. T., Hazen, T. C. & other authors ( 2007; ). Cell-wide responses to low-oxygen exposure in Desulfovibrio vulgaris Hildenborough. J Bacteriol 189, 5996–6010.[CrossRef]
    [Google Scholar]
  87. Nie, L., Wu, G. & Zhang, W. ( 2006a; ). Correlation of mRNA expression and protein abundance affected by multiple sequence features related to translational efficiency in Desulfovibrio vulgaris: a quantitative analysis. Genetics 174, 2229–2243.[CrossRef]
    [Google Scholar]
  88. Nie, L., Wu, G. & Zhang, W. ( 2006b; ). Correlation between mRNA and protein abundance in Desulfovibrio vulgaris: a multiple regression to identify sources of variations. Biochem Biophys Res Commun 339, 603–610.[CrossRef]
    [Google Scholar]
  89. Nie, L., Wu, G., Brockman, F. J. & Zhang, W. ( 2006c; ). Integrated analysis of transcriptomic and proteomic data of Desulfovibrio vulgaris: zero-inflated Poisson regression models to predict abundance of undetected proteins. Bioinformatics 22, 1641–1647.[CrossRef]
    [Google Scholar]
  90. Nie, L., Wu, G., Culley, D. E., Scholten, J. C. & Zhang, W. ( 2007; ). Integrative analysis of transcriptomic and proteomic data: challenges, solutions and applications. Crit Rev Biotechnol 27, 63–75.[CrossRef]
    [Google Scholar]
  91. Nie, L., Wu, G. & Zhang, W. ( 2008; ). Statistical application and challenges in global gel-free proteomic analysis by mass spectrometry. Crit Rev Biotechnol 28, 297–307.[CrossRef]
    [Google Scholar]
  92. Nierman, W., Eisen, J. A. & Fraser, C. M. ( 2000; ). Microbial genome sequencing 2000: new insights into physiology, evolution and expression analysis. Res Microbiol 151, 79–84.[CrossRef]
    [Google Scholar]
  93. Norbeck, A. D., Callister, S. J., Monroe, M. E., Jaitly, N., Elias, D. A., Lipton, M. S. & Smith, R. D. ( 2006; ). Proteomic approaches to bacterial differentiation. J Microbiol Methods 67, 473–486.[CrossRef]
    [Google Scholar]
  94. Nunez, C., Esteve-Núñez, A., Giometti, C., Tollaksen, S., Khare, T., Lin, W., Lovley, D. R. & Methé, B. A. ( 2006; ). DNA microarray and proteomic analyses of the RpoS regulon in Geobacter sulfurreducens. J Bacteriol 188, 2792–2800.[CrossRef]
    [Google Scholar]
  95. O'Farrell, P. H. ( 1975; ). High resolution two-dimensional electrophoresis of proteins. J Biol Chem 250, 4007–4021.
    [Google Scholar]
  96. Oliver, S. G., Winson, M. K., Kell, D. B. & Baganz, F. ( 1998; ). Systematic functional analysis of the yeast genome. Trends Biotechnol 16, 373–378.[CrossRef]
    [Google Scholar]
  97. Ou, K., Ong, C., Koh, S. Y., Rodrigues, F., Sim, S. H., Wong, D., Ooi, C. H., Ng, K. C., Jikuya, H. & other authors ( 2005; ). Integrative genomic, transcriptional, and proteomic diversity in natural isolates of the human pathogen Burkholderia pseudomallei. J Bacteriol 187, 4276–4285.[CrossRef]
    [Google Scholar]
  98. Ozsolak, F., Platt, A. R., Jones, D. R., Reifenberger, J. G., Sass, L. E., McInerney, P., Thompson, J. F., Bowers, J., Jarosz, M. & Milos, P. M. ( 2009; ). Direct RNA sequencing. Nature 461, 814–818.[CrossRef]
    [Google Scholar]
  99. Park, S. J., Lee, S. Y., Cho, J., Kim, T. Y., Lee, J. W., Park, J. H. & Han, M. J. ( 2005; ). Global physiological understanding and metabolic engineering of microorganisms based on omics studies. Appl Microbiol Biotechnol 68, 567–579.[CrossRef]
    [Google Scholar]
  100. Parrish, J. R., Yu, J., Liu, G., Hines, J. A., Chan, J. E., Mangiola, B. A., Zhang, H., Pacifico, S., Fotouhi, F. & other authors ( 2007; ). A proteome-wide protein interaction map for Campylobacter jejuni. Genome Biol 8, R130 [CrossRef]
    [Google Scholar]
  101. Pir, P., Kırdar, B., Hayes, A., Önsan, Z., Ülgen, K. & Oliver, S. ( 2006; ). Integrative investigation of metabolic and transcriptomic data. BMC Bioinformatics 7, 203 [CrossRef]
    [Google Scholar]
  102. Raamsdonk, L. M., Teusink, B., Broadhurst, D., Zhang, N., Hayes, A., Walsh, M. C., Berdon, J. A., Brindle, K. M., Kell, D. B. & other authors ( 2001; ). A functional genomics strategy that uses metabolome data to reveal the phenotype of silent mutations. Nat Biotechnol 19, 45–50.[CrossRef]
    [Google Scholar]
  103. Ren, B., Robert, F., Wyrick, J. J., Aparicio, O., Jennings, E. G., Simon, I., Zeitlinger, J., Schreiber, J., Hannett, N. & other authors ( 2000; ). Genome-wide location and function of DNA-binding proteins. Science 290, 2306–2309.[CrossRef]
    [Google Scholar]
  104. Rocha, E. P. ( 2008; ). The organization of the bacterial genome. Annu Rev Genet 42, 211–223.[CrossRef]
    [Google Scholar]
  105. Rodriguez-Llorente, I., Caviedes, M. A., Dary, M., Palomares, A. J., Cánovas, F. M. & Peregrín-Alvarez, J. M. ( 2009; ). The Symbiosis Interactome: a computational approach reveals novel components, functional interactions and modules in Sinorhizobium meliloti. BMC Syst Biol 3, 63 [CrossRef]
    [Google Scholar]
  106. Scherl, A., François, P., Bento, M., Deshusses, J. M., Charbonnier, Y., Converset, V., Huyghe, A., Walter, N., Hoogland, C. & other authors ( 2005; ). Correlation of proteomic and transcriptomic profiles of Staphylococcus aureus during the post-exponential phase of growth. J Microbiol Methods 60, 247–257.[CrossRef]
    [Google Scholar]
  107. Scherl, A., François, P., Charbonnier, Y., Deshusses, J. M., Koessler, T., Huyghe, A., Bento, M., Stahl-Zeng, J., Fischer, A. & other authors ( 2006; ). Exploring glycopeptide-resistance in Staphylococcus aureus: a combined proteomics and transcriptomics approach for the identification of resistance-related markers. BMC Genomics 7, 296 [CrossRef]
    [Google Scholar]
  108. Schilling, C. H., Edwards, J. S. & Palsson, B. O. ( 1999; ). Toward metabolic phenomics: analysis of genomic data using flux balances. Biotechnol Prog 15, 288–295.[CrossRef]
    [Google Scholar]
  109. Schmid, A. K., Reiss, D. J., Kaur, A., Pan, M., King, N., Van, P. T., Hohmann, L., Martin, D. B. & Baliga, N. S. ( 2007; ). The anatomy of microbial cell state transitions in response to oxygen. Genome Res 17, 1399–1413.[CrossRef]
    [Google Scholar]
  110. Schoolnik, G. K. ( 2001; ). The accelerating convergence of genomics and microbiology. Genome Biol 2, REPORTS4009
    [Google Scholar]
  111. Sharan, R. & Ideker, T. ( 2006; ). Modeling cellular machinery through biological network comparison. Nat Biotechnol 24, 427–433.[CrossRef]
    [Google Scholar]
  112. Singh, O. V. & Nagaraj, N. S. ( 2006; ). Transcriptomics, proteomics and interactomics: unique approaches to track the insights of bioremediation. Brief Funct Genomic Proteomic 4, 355–362.[CrossRef]
    [Google Scholar]
  113. Soga, T., Ohashi, Y., Ueno, Y., Naraoka, H., Tomita, M. & Nishioka, T. ( 2003; ). Quantitative metabolome analysis using capillary electrophoresis mass spectrometry. J Proteome Res 2, 488–494.[CrossRef]
    [Google Scholar]
  114. Sonck, K. A., Kint, G., Schoofs, G., Vander Wauven, C., Vanderleyden, J. & De Keersmaecker, S. C. ( 2009; ). The proteome of Salmonella typhimurium grown under in vivo-mimicking conditions. Proteomics 9, 565–579.[CrossRef]
    [Google Scholar]
  115. Stedtfeld, R. D., Baushke, S. W., Tourlousse, D. M., Miller, S. M., Stedtfeld, T. M., Gulari, E., Tiedje, J. M. & Hashsham, S. A. ( 2008; ). Development and experimental validation of a predictive threshold cycle equation for quantification of virulence and marker genes by high-throughput nanoliter-volume PCR on the OpenArray platform. Appl Environ Microbiol 74, 3831–3838.[CrossRef]
    [Google Scholar]
  116. Steinfath, M., Repsilber, D., Scholz, M., Walther, D. & Selbig, J. ( 2007; ). Integrated data analysis for genome-wide research. EXS 97, 309–329.
    [Google Scholar]
  117. Suzuki, I., Simon, W. J. & Slabas, A. R. ( 2006; ). The heat shock response of Synechocystis sp. PCC 6803 analysed by transcriptomics and proteomics. J Exp Bot 57, 1573–1578.[CrossRef]
    [Google Scholar]
  118. Tang, Y. J., Martin, H. G., Myers, S., Rodriguez, S., Baidoo, E. E. & Keasling, J. D. ( 2009a; ). Advances in analysis of microbial metabolic fluxes via 13C isotopic labeling. Mass Spectrom Rev 28, 362–375.[CrossRef]
    [Google Scholar]
  119. Tang, Y. J., Martin, H. G., Dehal, P. S., Deutschbauer, A., Llora, X., Meadows, A., Arkin, A. & Keasling, J. D. ( 2009b; ). Metabolic flux analysis of Shewanella spp. reveals evolutionary robustness in central carbon metabolism. Biotechnol Bioeng 102, 1161–1169.[CrossRef]
    [Google Scholar]
  120. Ter Kuile, B. H. & Westerhoff, H. V. ( 2001; ). Transcriptome meets metabolome: hierarchical and metabolic regulation of the glycolytic pathway. FEBS Lett 500, 169–171.[CrossRef]
    [Google Scholar]
  121. Tibshirani, R. ( 1996; ). Regression shrinkage and selection via the lasso. J Roy Statist Soc Ser B Methodol 58, 267–288.
    [Google Scholar]
  122. Tong, A. H., Lesage, G., Bader, G. D., Ding, H., Xu, H., Xin, X., Young, J., Berriz, G. F., Brost, R. L. & other authors ( 2004; ). Global mapping of the yeast genetic interaction network. Science 303, 808–813.[CrossRef]
    [Google Scholar]
  123. Torres-García, W., Zhang, W., Runger, G. C., Johnson, R. H. & Meldrum, D. R. ( 2009; ). Integrative analysis of transcriptomic and proteomic data of Desulfovibrio vulgaris: a non-linear model to predict abundance of undetected proteins. Bioinformatics 25, 1905–1914.[CrossRef]
    [Google Scholar]
  124. Toya, Y., Ishii, N., Hirasawa, T., Naba, M., Hirai, K., Sugawara, K., Igarashi, S., Shimizu, K., Tomita, M. & Soga, T. ( 2007; ). Direct measurement of isotopomer of intracellular metabolites using capillary electrophoresis time-of-flight mass spectrometry for efficient metabolic flux analysis. J Chromatogr A 1159, 134–141.[CrossRef]
    [Google Scholar]
  125. Trauger, S. A., Kalisak, E., Kalisiak, J., Morita, H., Weinberg, M. V., Menon, A. L., Poole, F. L., II, Adams, M. W. & Siuzdak, G. ( 2008; ). Correlating the transcriptome, proteome, and metabolome in the environmental adaptation of a hyperthermophile. J Proteome Res 7, 1027–1035.[CrossRef]
    [Google Scholar]
  126. Tweeddale, H., Notley-McRobb, L. & Ferenci, T. ( 1998; ). Effect of slow growth on metabolism of Escherichia coli, as revealed by global metabolite pool (metabolome) analysis. J Bacteriol 180, 5109–5116.
    [Google Scholar]
  127. Tweeddale, H., Notley-McRobb, L. & Ferenci, T. ( 1999; ). Assessing the effect of reactive oxygen species on Escherichia coli using a metabolome approach. Redox Rep 4, 237–241.[CrossRef]
    [Google Scholar]
  128. Typas, A., Nichols, R. J., Siegele, D. A., Shales, M., Collins, S. R., Lim, B., Braberg, H., Yamamoto, N., Takeuchi, R. & other authors ( 2008; ). High-throughput, quantitative analyses of genetic interactions in E. coli. Nat Methods 5, 781–787.[CrossRef]
    [Google Scholar]
  129. Urbanczyk-Wochniak, E., Luedemann, A., Kopka, J., Selbig, J., Roessner-Tunali, U., Willmitzer, L. & Fernie, A. R. ( 2003; ). Parallel analysis of transcript and metabolic profiles: a new approach in systems biology. EMBO Rep 4, 989–993.[CrossRef]
    [Google Scholar]
  130. Urbanczyk-Wochniak, E., Willmitzer, L. & Fernie, A. R. ( 2007; ). Integrating profiling data: using linear correlation to reveal coregulation of transcript and metabolites. Methods Mol Biol 358, 77–85.
    [Google Scholar]
  131. Uyar, E., Kurokawa, K., Yoshimura, M., Ishikawa, S., Ogasawara, N. & Oshima, T. ( 2009; ). Differential binding profiles of StpA in wild-type and hns mutant cells: a comparative analysis of cooperative partners by chromatin immunoprecipitation-microarray analysis. J Bacteriol 191, 2388–2391.[CrossRef]
    [Google Scholar]
  132. van der Werf, M. J., Jellema, R. H. & Hankemeier, T. ( 2005; ). Microbial metabolomics: replacing trial-and-error by the unbiased selection and ranking of targets. J Ind Microbiol Biotechnol 32, 234–252.[CrossRef]
    [Google Scholar]
  133. Wan, X. F., Verberkmoes, N. C., McCue, L. A., Stanek, D., Connelly, H., Hauser, L. J., Wu, L., Liu, X., Yan, T. & other authors ( 2004; ). Transcriptomic and proteomic characterization of the Fur modulon in the metal-reducing bacterium Shewanella oneidensis. J Bacteriol 186, 8385–8400.[CrossRef]
    [Google Scholar]
  134. Ward, N. & Fraser, C. M. ( 2005; ). How genomics has affected the concept of microbiology. Curr Opin Microbiol 8, 564–571.[CrossRef]
    [Google Scholar]
  135. Washburn, M. P., Koller, A., Oshiro, G., Ulaszek, G., Plouffe, D., Deciu, C., Winzeler, E. & Yates, J. R., III ( 2003; ). Protein pathway and complex clustering of correlated mRNA and protein expression analyses in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 100, 3107–3112.[CrossRef]
    [Google Scholar]
  136. Waters, K. M., Pounds, J. G. & Thrall, B. D. ( 2006; ). Data merging for integrated microarray and proteomic analysis. Brief Funct Genomic Proteomic 5, 261–272.[CrossRef]
    [Google Scholar]
  137. Watson, M. ( 2005; ). ProGenExpress: visualization of quantitative data on prokaryotic genomes. BMC Bioinformatics 6, 98 [CrossRef]
    [Google Scholar]
  138. Webb-Robertson, B. J., McCue, L. A., Beagley, N., McDermott, J. E., Wunschel, D. S., Varnum, S. M., Hu, J. Z., Isern, N. G., Buchko, G. W. & other authors ( 2009; ). A Bayesian integration model of high-throughput proteomics and metabolomics data for improved early detection of microbial infections. Pac Symp Biocomput 451–463.
    [Google Scholar]
  139. Weckwerth, W. & Morgenthal, K. ( 2005; ). Metabolomics: from pattern recognition to biological interpretation. Drug Discov Today 10, 1551–1558.[CrossRef]
    [Google Scholar]
  140. Weckwerth, W., Wenzel, K. & Fiehn, O. ( 2004; ). Process for the integrated extraction, identification and quantification of metabolites, proteins and RNA to reveal their co-regulation in biochemical networks. Proteomics 4, 78–83.[CrossRef]
    [Google Scholar]
  141. Wienkoop, S., Morgenthal, K., Wolschin, F., Scholz, M., Selbig, J. & Weckwerth, W. ( 2008; ). Integration of metabolomic and proteomic phenotypes. Mol Cell Proteomics 7, 1725–1736.[CrossRef]
    [Google Scholar]
  142. Wilkins, M. R., Pasquali, C., Appel, R. D., Ou, K., Golaz, O., Sanchez, J., Yan, J. X., Gooley, A. A., Hughes, G. & other authors ( 1996; ). From proteins to proteomes: large scale protein identification by two-dimensional electrophoresis and amino acid analysis. Biotechnology (N Y) 14, 61–65.[CrossRef]
    [Google Scholar]
  143. Wolff, S., Otto, A., Albrecht, D., Zeng, J. S., Büttner, K., Glückmann, M., Hecker, M. & Becher, D. ( 2006; ). Gel-free and gel-based proteomics in Bacillus subtilis: a comparative study. Mol Cell Proteomics 5, 1183–1192.[CrossRef]
    [Google Scholar]
  144. Yan, W., Hwang, D. & Aebersold, R. ( 2008; ). Quantitative proteomic analysis to profile dynamic changes in the spatial distribution of cellular proteins. Methods Mol Biol 432, 389–401.
    [Google Scholar]
  145. Yang, S., Tschaplinski, T. J., Engle, N. L., Carroll, S. L., Martin, S. L., Davison, B. H., Palumbo, A. V., Rodriguez, M., Jr & Brown, S. D. ( 2009; ). Transcriptomic and metabolomic profiling of Zymomonas mobilis during aerobic and anaerobic fermentations. BMC Genomics 10, 34 [CrossRef]
    [Google Scholar]
  146. Ye, R. W., Wang, T., Bedzyk, L. & Croker, K. M. ( 2001; ). Applications of DNA microarrays in microbial systems. J Microbiol Methods 47, 257–272.[CrossRef]
    [Google Scholar]
  147. Yoon, S. H., Han, M. J., Lee, S. Y., Jeong, K. J. & Yoo, J. S. ( 2003; ). Combined transcriptome and proteome analysis of Escherichia coli during high cell density culture. Biotechnol Bioeng 81, 753–767.[CrossRef]
    [Google Scholar]
  148. Yu, E. Z., Burba, A. E. & Gerstein, M. ( 2007; ). PARE: a tool for comparing protein abundance and mRNA expression data. BMC Bioinformatics 8, 309 [CrossRef]
    [Google Scholar]
  149. Zhang, W., Gritsenko, M. A., Moore, R. J., Culley, D. E., Nie, L., Petritis, K., Strittmat-ter, E. F., Camp, D. G., II, Smith, R. D. & Brockman, F. J. ( 2006a; ). A proteomic view of Desulfovibrio vulgaris metabolism as determined by liquid chromatography coupled with tandem mass spectrometry. Proteomics 6, 4286–4299.[CrossRef]
    [Google Scholar]
  150. Zhang, W., Culley, D. E., Scholten, J. C., Hogan, M., Vitiritti, L. & Brockman, F. J. ( 2006b; ). Global transcriptomic analysis of Desulfovibrio vulgaris on different electron donors. Antonie Van Leeuwenhoek 89, 221–237.[CrossRef]
    [Google Scholar]
  151. Zhao, B. & Poh, C. L. ( 2008; ). Insights into environmental bioremediation by microorganisms through functional genomics and proteomics. Proteomics 8, 874–881.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.034793-0
Loading
/content/journal/micro/10.1099/mic.0.034793-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error