1887

Abstract

Recent advances in various ‘omics’ technologies enable quantitative monitoring of the abundance of various biological molecules in a high-throughput manner, and thus allow determination of their variation between different biological states on a genomic scale. Several popular ‘omics’ platforms that have been used in microbial systems biology include transcriptomics, which measures mRNA transcript levels; proteomics, which quantifies protein abundance; metabolomics, which determines abundance of small cellular metabolites; interactomics, which resolves the whole set of molecular interactions in cells; and fluxomics, which establishes dynamic changes of molecules within a cell over time. However, no single ‘omics’ analysis can fully unravel the complexities of fundamental microbial biology. Therefore, integration of multiple layers of information, the multi-‘omics’ approach, is required to acquire a precise picture of living micro-organisms. In spite of this being a challenging task, some attempts have been made recently to integrate heterogeneous ‘omics’ datasets in various microbial systems and the results have demonstrated that the multi-‘omics’ approach is a powerful tool for understanding the functional principles and dynamics of total cellular systems. This article reviews some basic concepts of various experimental ‘omics’ approaches, recent application of the integrated ‘omics’ for exploring metabolic and regulatory mechanisms in microbes, and advances in computational and statistical methodologies associated with integrated ‘omics’ analyses. Online databases and bioinformatic infrastructure available for integrated ‘omics’ analyses are also briefly discussed.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.034793-0
2010-02-01
2020-07-13
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/2/287.html?itemId=/content/journal/micro/10.1099/mic.0.034793-0&mimeType=html&fmt=ahah

References

  1. Adler P., Reimand J., Jänes J., Kolde R., Peterson H., Vilo J.. 2008; EGGanim: pathway animations for high-throughput data. Bioinformatics24:588–590
    [Google Scholar]
  2. Alter O., Golub G. H.. 2004; Integrative analysis of genomescale data by using pseudoinverse projection predicts novel correlation between DNA replication and RNA transcription. Proc Natl Acad Sci U S A101:16577–16582
    [Google Scholar]
  3. Askenazi M., Driggers E. M., Holtzman D. A., Norman T. C., Iverson S., Zimmer D. P., Boers M. E., Blomquist P. R., Martinez E. J.. other authors 2003; Integrating transcriptional and metabolite profiles to direct the engineering of lovastatin-producing fungal strains. Nat Biotechnol21:150–156
    [Google Scholar]
  4. Aubert C., Leroy G., Bianco P., Forest E., Bruschi M., Dolla A.. 1998; Characterization of the cytochromes c from Desulfovibrio desulfuricans G201. Biochem Biophys Res Commun242:213–218
    [Google Scholar]
  5. Baggerman G., Vierstraete E., De Loof A., Schoofs L.. 2005; Gel-based versus gel-free proteomics: a review. Comb Chem High Throughput Screen8:669–677
    [Google Scholar]
  6. Beyer A., Hollunder J., Nasheuer H. P., Wilhelm T.. 2004; Post-transcriptional expression regulation in the yeast Saccharomyces cerevisiae on a genomic scale. Mol Cell Proteomics3:1083–1092
    [Google Scholar]
  7. Boone C., Bussey H., Andrews B. J.. 2007; Exploring genetic interactions and networks with yeast. Nat Rev Genet8:437–449
    [Google Scholar]
  8. Brockmann R., Beyer A., Heinisch J. J., Wilhelm T.. 2007; Posttranscriptional expression regulation: what determines translation rates?. PLOS Comput Biol3:e57
    [Google Scholar]
  9. Brown S. D., Thompson M. R., Verberkmoes N. C., Chourey K., Shah M., Zhou J., Hettich R. L., Thompson D. K.. 2006; Molecular dynamics of the Shewanella oneidensis response to chromate stress. Mol Cell Proteomics5:1054–1071
    [Google Scholar]
  10. Bruscella P., Eraso J. M., Roh J. H., Kaplan S.. 2008; The use of chromatin immunoprecipitation to define PpsR binding activity in Rhodobacter sphaeroides 2.4.1. J Bacteriol190:6817–6828
    [Google Scholar]
  11. Budde I., Steil L., Scharf C., Völker U., Bremer E.. 2006; Adaptation of Bacillus subtilis to growth at low temperature: a combined transcriptomic and proteomic appraisal. Microbiology152:831–853
    [Google Scholar]
  12. Butland G., Peregrín-Alvarez J. M., Li J., Yang W., Yang X., Canadien V., Starostine A., Richards D., Beattie B.. other authors 2005; Interaction network containing conserved and essential protein complexes in Escherichia coli. Nature433:531–537
    [Google Scholar]
  13. Butland G., Babu M., Díaz-Mejía J. J., Bohdana F., Phanse S., Gold B., Yang W., Li J., Gagarinova A. G.. other authors 2008; eSGA: E. coli synthetic genetic array analysis. Nat Methods5:789–795
    [Google Scholar]
  14. Cardenas E., Tiedje J. M.. 2008; New tools for discovering and characterizing microbial diversity. Curr Opin Biotechnol19:544–549
    [Google Scholar]
  15. Cascante M., Marin S.. 2008; Metabolomics and fluxomics approaches. Essays Biochem45:67–82
    [Google Scholar]
  16. Cash P.. 2000; Proteomics in medical microbiology. Electrophoresis21:1187–1201
    [Google Scholar]
  17. Castrillo J. I., Hayes A., Mohammed S., Gaskell S. J., Oliver S. G.. 2003; An optimized protocol for metabolome analysis in yeast using direct infusion electrospray mass spectrometry. Phytochemistry62:929–937
    [Google Scholar]
  18. Chen S., Wilson D. B.. 2007; Proteomic and transcriptomic analysis of extracellular proteins and mRNA levels in Thermobifida fusca grown on cellobiose and glucose. J Bacteriol189:6260–6265
    [Google Scholar]
  19. Corbin R. W., Paliy O., Yang F., Shabanowitz J., Platt M., Lyons C. E. Jr, Root K., McAuliffe J., Jordan M. I.. other authors 2003; Toward a protein profile of Escherichia coli: comparison to its transcription profile. Proc Natl Acad Sci U S A100:9232–9237
    [Google Scholar]
  20. De Keersmaecker S. C., Thijs I. M., Vanderleyden J., Marchal K.. 2006; Integration of omics data: how well does it work for bacteria?. Mol Microbiol62:1239–1250
    [Google Scholar]
  21. Depuydt S., Trenkamp S., Fernie A. R., Elftieh S., Renou J. P., Vuylsteke M., Holsters M., Vereecke D.. 2009; An integrated genomics approach to define niche establishment by Rhodococcus fascians. Plant Physiol149:1366–1386
    [Google Scholar]
  22. Díaz-Mejía J. J., Babu M., Emili A.. 2009; Computational and experimental approaches to chart the Escherichia coli cell-envelope-associated proteome and interactome. FEMS Microbiol Rev33:66–97
    [Google Scholar]
  23. Dunn W. B.. 2008; Current trends and future requirements for the mass spectrometric investigation of microbial, mammalian and plant metabolomes. Phys Biol5:11001
    [Google Scholar]
  24. Dunn W. B., Bailey N. J., Johnson H. E.. 2005; Measuring the metabolome: current analytical technologies. Analyst130:606–625
    [Google Scholar]
  25. Elias D. A., Mukhopadhyay A., Joachimiak M. P., Drury E. C., Redding A. M., Yen H. C., Fields M. W., Hazen T. C., Arkin A. P.. other authors 2009; Expression profiling of hypothetical genes in Desulfovibrio vulgaris leads to improved functional annotation. Nucleic Acids Res37:2926–2939
    [Google Scholar]
  26. Engels V., Lindner S. N., Wendisch V. F.. 2008; The global repressor SugR controls expression of genes of glycolysis and of the l-lactate dehydrogenase LdhA in Corynebacterium glutamicum. J Bacteriol190:8033–8044
    [Google Scholar]
  27. Fagan A., Culhane A. C., Higgins D. G.. 2007; A multivariate analysis approach to the integration of proteomic and gene expression data. Proteomics7:2162–2171
    [Google Scholar]
  28. Fan J., Li R.. 2001; Variable selection via nonconcave penalized likelihood and its oracle properties. J Am Stat Assoc96:1348–1360
    [Google Scholar]
  29. Faria-Campos A. C., Gomes R. R., Moratelli F. S., Rausch-Fernandes H., Franco G. R., Campos S. V.. 2007; BNDb – Biomolecules Nucleus Database: an integrated proteomics and transcriptomics database. Genet Mol Res6:937–945
    [Google Scholar]
  30. Fiehn O.. 2001; Combining genomics, metabolome analysis, and biochemical modelling to understand metabolic networks. Comp Funct Genomics2:155–168
    [Google Scholar]
  31. Forster J., Gombert A. K., Nielsen J.. 2002; A functional genomics approach using metabolomics and in silico pathway analysis. Biotechnol Bioeng79:703–712
    [Google Scholar]
  32. Fraser C. M., Rappuoli R.. 2005; Application of microbial genomic science to advanced therapeutics. Annu Rev Med56:459–474
    [Google Scholar]
  33. Frias-Lopez J., Shi Y., Tyson G. W., Coleman M. L., Schuster S. C., Chisholm S. W., Delong E. F.. 2008; Microbial community gene expression in ocean surface waters. Proc Natl Acad Sci U S A105:3805–3810
    [Google Scholar]
  34. Gao W., Liu Y., Giometti C. S., Tollaksen S. L., Khare T., Wu L., Klingeman D. M., Fields M. W., Zhou J.. 2006; Knock-out of SO1377 gene, which encodes the member of a conserved hypothetical bacterial protein family COG2268, results in alteration of iron metabolism, increased spontaneous mutation and hydrogen peroxide sensitivity in Shewanella oneidensis MR-1. BMC Genomics7:76
    [Google Scholar]
  35. Garcia D. E., Baidoo E. E., Benke P. I., Pingitore F., Tang Y. J., Villa S., Keasling J. D.. 2008; Separation and mass spectrometry in microbial metabolomics. Curr Opin Microbiol11:233–239
    [Google Scholar]
  36. Gilbert J. A., Field D., Huang Y., Edwards R., Li W., Gilna P., Joint I.. 2008; Detection of large numbers of novel sequences in the metatranscriptomes of complex marine microbial communities. PLoS One3:e3042
    [Google Scholar]
  37. Gingras A. C., Aebersold R., Raught B.. 2005; Advances in protein complex analysis using mass spectrometry. J Physiol563:11–21
    [Google Scholar]
  38. Gonzalo-Asensio J., Mostowy S., Harders-Westerveen J., Huygen K., Hernández-Pando R., Thole J., Behr M., Gicquel B., Martín C.. 2008; PhoP: a missing piece in the intricate puzzle of Mycobacterium tuberculosis virulence. PLoS One3:e3496
    [Google Scholar]
  39. Graham R. L. J., Graham C., McMullan G.. 2007; Microbial proteomics: a mass spectrometry primer for biologists. Microb Cell Fact6:26
    [Google Scholar]
  40. Grainger D. C., Overton T. W., Reppas N., Wade J. T., Tamai E., Hobman J. L., Constantinidou C., Struhl K., Church G., Busby S. J.. 2004; Genomic studies with Escherichia coli MelR protein: applications of chromatin immunoprecipitation and microarrays. J Bacteriol186:6938–6943
    [Google Scholar]
  41. Greenbaum D., Jansen R., Gerstein M.. 2002; Analysis of mRNA expression and protein abundance data: an approach for the comparison of the enrichment of features in the cellular population of proteins and transcripts. Bioinformatics18:585–596
    [Google Scholar]
  42. Gygi S. P., Rochon Y., Franza B. R., Aebersold R.. 1999; Correlation between protein and mRNA abundance in yeast. Mol Cell Biol19:1720–1730
    [Google Scholar]
  43. Haqqani A. S., Kelly J. F., Stanimirovic D. B.. 2008; Quantitative protein profiling by mass spectrometry using label-free proteomics. Methods Mol Biol439:241–256
    [Google Scholar]
  44. Hegde P. S., White I. R., Debouck C.. 2003; Interplay of transcriptomics and proteomics. Curr Opin Biotechnol14:647–651
    [Google Scholar]
  45. Herring C. D., Raffaelle M., Allen T. E., Kanin E. I., Landick R., Ansari A. Z., Palsson B. Ø.. 2005; Immobilization of Escherichia coli RNA polymerase and location of binding sites by use of chromatin immunoprecipitation and microarrays. J Bacteriol187:6166–6174
    [Google Scholar]
  46. Hirai M. Y., Klein M., Fujikawa Y., Yano M., Goodenowe B., Yamazaki Y., Kanaya S., Nakamura Y., Kitayama M.. other authors 2005; Elucidation of gene-to-gene and metabolite-to-gene networks in Arabidopsis by integration of metabolomics and transcriptomics. J Biol Chem280:25590–25595
    [Google Scholar]
  47. Hoefgen R., Nikiforova V. J.. 2008; Metabolomics integrated with transcriptomics: assessing systems response to sulfur-deficiency stress. Physiol Plant132:190–198
    [Google Scholar]
  48. Horak C. E., Snyder M.. 2002; Global analysis of gene expression in yeast. Funct Integr Genomics2:171–180
    [Google Scholar]
  49. Hu P., Janga S. C., Babu M., Díaz-Mejía J. J., Butland G., Yang W., Pogoutse O., Guo X., Phanse S.. other authors 2009; Global functional atlas of Escherichia coli encompassing previously uncharacterized proteins. PLoS Biol7: e96
    [Google Scholar]
  50. Ideker T., Thorsson V., Ranish J. A., Christmas R., Buhler J., Eng J. K., Bumgarner R., Goodlett D. R., Aebersold R., Hood L.. 2001; Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. Science292:929–934
    [Google Scholar]
  51. Ishii N., Tomita M.. 2009; Multi-omics data-driven systems biology of E. coli. In Systems Biology and Biotechnology of Escherichia coli pp41–57 Edited by Lee S. Y.. Dordrecht, Netherlands: Springer;
    [Google Scholar]
  52. Ishii N., Nakahigashi K., Baba T., Robert M., Soga T., Kanai A., Hirasawa T., Naba M., Hirai K.. other authors 2007; Multiple high-throughput analyses monitor the response of E. coli to perturbations. Science316:593–597
    [Google Scholar]
  53. James P.. 1997; Protein identification in the post-genome era: the rapid rise of proteomics. Q Rev Biophys30:279–333
    [Google Scholar]
  54. Jayapal K. P., Philp R. J., Kok Y. J., Yap M. G., Sherman D. H., Griffin T. J., Hu W. S.. 2008; Uncovering genes with divergent mRNA-protein dynamics in Streptomyces coelicolor. PLoS One3: e2097
    [Google Scholar]
  55. Jennings L. K., Chartrand M. M., Lacrampe-Couloume G., Lollar B. S., Spain J. C., Gossett J. M.. 2009; Proteomic and transcriptomic analyses reveal genes upregulated by cis-dichloroethene in Polaromonas sp. strain JS666. Appl Environ Microbiol75:3733–3744
    [Google Scholar]
  56. Jones A., Hunt E., Wastling J. M., Pizarro A., Stoeckert C. J. Jr. 2004; An object model and database for functional genomics. Bioinformatics20:1583–1590
    [Google Scholar]
  57. Joyce A. R., Palsson B. O.. 2006; The model organism as a system: integrating ‘omics’ data sets. Nat Rev Mol Cell Biol7:198–210
    [Google Scholar]
  58. Jurgen B., Hanschke R., Sarvas M., Hecker M., Schweder T.. 2001; Proteome and transcriptome based analysis of Bacillus subtilis cells overproducing an insoluble heterologous protein. Appl Microbiol Biotechnol55:326–332
    [Google Scholar]
  59. Kagnoff M. F., Eckmann L.. 2001; Analysis of host responses to microbial infection using gene expression profiling. Curr Opin Microbiol4:246–250
    [Google Scholar]
  60. Kandpal R., Saviola B., Felton J.. 2009; The era of omics unlimited. Biotechniques46:351–355
    [Google Scholar]
  61. Kell D. B.. 2004; Metabolomics and systems biology: making sense of the soup. Curr Opin Microbiol7:296–307
    [Google Scholar]
  62. Kim J. G., Park D., Kim B. C., Cho S. W., Kim Y. T., Park Y. J., Cho H. J., Park H., Kim K. B.. other authors 2008; Predicting the interactome of Xanthomonas oryzae pathovar oryzae for target selection and DB service. BMC Bioinformatics9:41
    [Google Scholar]
  63. Krogan N. J., Cagney G., Yu H., Zhong G., Guo X., Ignatchenko A., Li J., Pu S., Datta N.. other authors 2006; Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature440:637–643
    [Google Scholar]
  64. Kromer J. O., Sorgenfrei O., Klopprogge K., Heinzle E., Wittmann C.. 2004; In-depth profiling of lysine-producing Corynebacterium glutamicum by combined analysis of the transcriptome, metabolome, and fluxome. J Bacteriol186:1769–1784
    [Google Scholar]
  65. Kyrpides N. C.. 2009; Fifteen years of microbial genomics: meeting the challenges and fulfilling the dream. Nat Biotechnol27:627–632
    [Google Scholar]
  66. Lacerda C. M., Reardon K. F.. 2009; Environmental proteomics: applications of proteome profiling in environmental microbiology and biotechnology. Brief Funct Genomic Proteomic8:75–87
    [Google Scholar]
  67. Lê Cao K. A., Rossouw D., Robert-Granié C., Besse P.. 2008; A sparse PLS for variable selection when integrating omics data. Stat Appl Genet Mol Biol7: Article 35
    [Google Scholar]
  68. Lê Cao K. A., Martin P. B., Robert-Granié C., Besse P.. 2009; Sparse canonical methods for biological data integration: application to a cross-platform study. BMC Bioinformatics10:34
    [Google Scholar]
  69. Lee J. H., Lee D. E., Lee B. U., Kim H. S.. 2003; Global analyses of transcriptomes and proteomes of a parent strain and an l-threonine-overproducing mutant strain. J Bacteriol185:5442–5451
    [Google Scholar]
  70. Lin J., Qian J.. 2007; Systems biology approach to integrative comparative genomics. Expert Rev Proteomics4:107–119
    [Google Scholar]
  71. Mader U., Homuth G., Scharf C., Buttner K., Bode R., Hecker M.. 2002a; Transcriptome and proteome analysis of Bacillus subtilis gene expression modulated by amino acid availability. J Bacteriol184:4288–4295
    [Google Scholar]
  72. Mader U., Antelmann H., Buder T., Dahl M. K., Hecker M., Homuth G.. 2002b; Bacillus subtilis functional genomics: genome-wide analysis of the DegS-DegU regulon by transcriptomics and proteomics. Mol Genet Genomics268:455–467
    [Google Scholar]
  73. Maraziotis I. A., Dimitrakopoulou K., Bezerianos A.. 2007; Growing functional modules from a seed protein via integration of protein interaction and gene expression data. BMC Bioinformatics8: 408
    [Google Scholar]
  74. Martínez-Cruz L. A., Rubio A., Martínez-Chantar M. L., Labarga A., Barrio I., Podhorski A., Segura V., Sevilla Campo J. L., Avila M. A., Mato J. M.. 2003; GARBAN: genomic analysis and rapid biological annotation of cDNA microarray and proteomic data. Bioinformatics19:2158–2160
    [Google Scholar]
  75. May P., Christian J. O., Kempa S., Walther D.. 2009; ChlamyCyc: an integrative systems biology database and web-portal for Chlamydomonas reinhardtii. BMC Genomics10:209
    [Google Scholar]
  76. Medini D., Serruto D., Parkhill J., Relman D. A., Donati C., Moxon R., Falkow S., Rappuoli R.. 2008; Microbiology in the post-genomic era. Nat Rev Microbiol6:419–430
    [Google Scholar]
  77. Mehra A., Lee K. H., Hatzimanikatis V. H.. 2003; Insights into the relation between mRNA and protein expression patterns. I. Theoretical considerations. Biotechnol Bioeng84:822–833
    [Google Scholar]
  78. Misra R. V., Horler R. S., Reindl W., Goryanin I. I., Thomas G. H.. 2005; EchoBASE: an integrated post-genomic database for Escherichia coli. Nucleic Acids Res33:D329–D333
    [Google Scholar]
  79. Missiuro P. V., Liu K., Zou L., Ross B. C., Zhao G., Liu J. S., Ge H.. 2009; Information flow analysis of interactome networks. PLOS Comput Biol5: e1000350
    [Google Scholar]
  80. Mogilevskaya E., Bagrova N., Plyusnina T., Gizzatkulov N., Metelkin E., Goryacheva E., Smirnov S., Kosinsky Y., Dorodnov A.. other authors 2009; Kinetic modeling as a tool to integrate multilevel dynamic experimental data. Methods Mol Biol563:197–218
    [Google Scholar]
  81. Mootha V. K., Bunkenborg J., Olsen J. V., Hjerrild M., Wisniewski J. R., Stahl E., Bolouri M. S., Ray H. N., Sihag S.. other authors 2003a; Integrated analysis of protein composition, tissue diversity, and gene regulation in mouse mitochondria. Cell115:629–640
    [Google Scholar]
  82. Mootha V. K., Lepage P., Miller K., Bunkenborg J., Reich M., Hjerrild M., Del-monte T., Villeneuve A., Sladek R.. & other authors (2003b). Identification of a gene causing human cytochrome c oxidase deficiency by integrative genomics. Proc Natl Acad Sci U S A100:605–610
    [Google Scholar]
  83. Morgenthal K., Weckwerth W., Steuer R.. 2006; Metabolomic networks in plants: Transitions from pattern recognition to biological interpretation. Biosytems82:108–117
    [Google Scholar]
  84. Morgenthal K., Wienkoop S., Wolschin F., Weckwerth W.. 2007; Integrative profiling of metabolites and proteins: improving pattern recognition and biomarker selection for systems level approaches. Methods Mol Biol358:57–75
    [Google Scholar]
  85. Mukhopadhyay A., He Z., Alm E. J., Arkin A. P., Baidoo E. E., Borglin S. C., Chen W., Hazen T. C., He Q.. other authors 2006; Salt stress in Desulfovibrio vulgaris Hildenborough: an integrated genomics approach. J Bacteriol188:4068–4078
    [Google Scholar]
  86. Mukhopadhyay A., Redding A. M., Joachimiak M. P., Arkin A. P., Borglin S. E., Dehal P. S., Chakraborty R., Geller J. T., Hazen T. C.. other authors 2007; Cell-wide responses to low-oxygen exposure in Desulfovibrio vulgaris Hildenborough. J Bacteriol189:5996–6010
    [Google Scholar]
  87. Nie L., Wu G., Zhang W.. 2006a; Correlation of mRNA expression and protein abundance affected by multiple sequence features related to translational efficiency in Desulfovibrio vulgaris: a quantitative analysis. Genetics174:2229–2243
    [Google Scholar]
  88. Nie L., Wu G., Zhang W.. 2006b; Correlation between mRNA and protein abundance in Desulfovibrio vulgaris: a multiple regression to identify sources of variations. Biochem Biophys Res Commun339:603–610
    [Google Scholar]
  89. Nie L., Wu G., Brockman F. J., Zhang W.. 2006c; Integrated analysis of transcriptomic and proteomic data of Desulfovibrio vulgaris: zero-inflated Poisson regression models to predict abundance of undetected proteins. Bioinformatics22:1641–1647
    [Google Scholar]
  90. Nie L., Wu G., Culley D. E., Scholten J. C., Zhang W.. 2007; Integrative analysis of transcriptomic and proteomic data: challenges, solutions and applications. Crit Rev Biotechnol27:63–75
    [Google Scholar]
  91. Nie L., Wu G., Zhang W.. 2008; Statistical application and challenges in global gel-free proteomic analysis by mass spectrometry. Crit Rev Biotechnol28:297–307
    [Google Scholar]
  92. Nierman W., Eisen J. A., Fraser C. M.. 2000; Microbial genome sequencing 2000: new insights into physiology, evolution and expression analysis. Res Microbiol151:79–84
    [Google Scholar]
  93. Norbeck A. D., Callister S. J., Monroe M. E., Jaitly N., Elias D. A., Lipton M. S., Smith R. D.. 2006; Proteomic approaches to bacterial differentiation. J Microbiol Methods67:473–486
    [Google Scholar]
  94. Nunez C., Esteve-Núñez A., Giometti C., Tollaksen S., Khare T., Lin W., Lovley D. R., Methé B. A.. 2006; DNA microarray and proteomic analyses of the RpoS regulon in Geobacter sulfurreducens. J Bacteriol188:2792–2800
    [Google Scholar]
  95. O'Farrell P. H.. 1975; High resolution two-dimensional electrophoresis of proteins. J Biol Chem250:4007–4021
    [Google Scholar]
  96. Oliver S. G., Winson M. K., Kell D. B., Baganz F.. 1998; Systematic functional analysis of the yeast genome. Trends Biotechnol16:373–378
    [Google Scholar]
  97. Ou K., Ong C., Koh S. Y., Rodrigues F., Sim S. H., Wong D., Ooi C. H., Ng K. C., Jikuya H.. other authors 2005; Integrative genomic, transcriptional, and proteomic diversity in natural isolates of the human pathogen Burkholderia pseudomallei. J Bacteriol187:4276–4285
    [Google Scholar]
  98. Ozsolak F., Platt A. R., Jones D. R., Reifenberger J. G., Sass L. E., McInerney P., Thompson J. F., Bowers J., Jarosz M., Milos P. M.. 2009; Direct RNA sequencing. Nature461:814–818
    [Google Scholar]
  99. Park S. J., Lee S. Y., Cho J., Kim T. Y., Lee J. W., Park J. H., Han M. J.. 2005; Global physiological understanding and metabolic engineering of microorganisms based on omics studies. Appl Microbiol Biotechnol68:567–579
    [Google Scholar]
  100. Parrish J. R., Yu J., Liu G., Hines J. A., Chan J. E., Mangiola B. A., Zhang H., Pacifico S., Fotouhi F.. other authors 2007; A proteome-wide protein interaction map for Campylobacter jejuni. Genome Biol8:R130
    [Google Scholar]
  101. Pir P., Kırdar B., Hayes A., önsan Z., ülgen K., Oliver S.. 2006; Integrative investigation of metabolic and transcriptomic data. BMC Bioinformatics7:203
    [Google Scholar]
  102. Raamsdonk L. M., Teusink B., Broadhurst D., Zhang N., Hayes A., Walsh M. C., Berdon J. A., Brindle K. M., Kell D. B.. other authors 2001; A functional genomics strategy that uses metabolome data to reveal the phenotype of silent mutations. Nat Biotechnol19:45–50
    [Google Scholar]
  103. Ren B., Robert F., Wyrick J. J., Aparicio O., Jennings E. G., Simon I., Zeitlinger J., Schreiber J., Hannett N.. other authors 2000; Genome-wide location and function of DNA-binding proteins. Science290:2306–2309
    [Google Scholar]
  104. Rocha E. P.. 2008; The organization of the bacterial genome. Annu Rev Genet42:211–223
    [Google Scholar]
  105. Rodriguez-Llorente I., Caviedes M. A., Dary M., Palomares A. J., Cánovas F. M., Peregrín-Alvarez J. M.. 2009; The Symbiosis Interactome: a computational approach reveals novel components, functional interactions and modules in Sinorhizobium meliloti. BMC Syst Biol3: 63
    [Google Scholar]
  106. Scherl A., François P., Bento M., Deshusses J. M., Charbonnier Y., Converset V., Huyghe A., Walter N., Hoogland C.. other authors 2005; Correlation of proteomic and transcriptomic profiles of Staphylococcus aureus during the post-exponential phase of growth. J Microbiol Methods60:247–257
    [Google Scholar]
  107. Scherl A., François P., Charbonnier Y., Deshusses J. M., Koessler T., Huyghe A., Bento M., Stahl-Zeng J., Fischer A.. other authors 2006; Exploring glycopeptide-resistance in Staphylococcus aureus: a combined proteomics and transcriptomics approach for the identification of resistance-related markers. BMC Genomics7:296
    [Google Scholar]
  108. Schilling C. H., Edwards J. S., Palsson B. O.. 1999; Toward metabolic phenomics: analysis of genomic data using flux balances. Biotechnol Prog15:288–295
    [Google Scholar]
  109. Schmid A. K., Reiss D. J., Kaur A., Pan M., King N., Van P. T., Hohmann L., Martin D. B., Baliga N. S.. 2007; The anatomy of microbial cell state transitions in response to oxygen. Genome Res17:1399–1413
    [Google Scholar]
  110. Schoolnik G. K.. 2001; The accelerating convergence of genomics and microbiology. Genome Biol2: REPORTS4009
    [Google Scholar]
  111. Sharan R., Ideker T.. 2006; Modeling cellular machinery through biological network comparison. Nat Biotechnol24:427–433
    [Google Scholar]
  112. Singh O. V., Nagaraj N. S.. 2006; Transcriptomics, proteomics and interactomics: unique approaches to track the insights of bioremediation. Brief Funct Genomic Proteomic4:355–362
    [Google Scholar]
  113. Soga T., Ohashi Y., Ueno Y., Naraoka H., Tomita M., Nishioka T.. 2003; Quantitative metabolome analysis using capillary electrophoresis mass spectrometry. J Proteome Res2:488–494
    [Google Scholar]
  114. Sonck K. A., Kint G., Schoofs G., Vander Wauven C., Vanderleyden J., De Keersmaecker S. C.. 2009; The proteome of Salmonella typhimurium grown under in vivo-mimicking conditions. Proteomics9:565–579
    [Google Scholar]
  115. Stedtfeld R. D., Baushke S. W., Tourlousse D. M., Miller S. M., Stedtfeld T. M., Gulari E., Tiedje J. M., Hashsham S. A.. 2008; Development and experimental validation of a predictive threshold cycle equation for quantification of virulence and marker genes by high-throughput nanoliter-volume PCR on the OpenArray platform. Appl Environ Microbiol74:3831–3838
    [Google Scholar]
  116. Steinfath M., Repsilber D., Scholz M., Walther D., Selbig J.. 2007; Integrated data analysis for genome-wide research. EXS97:309–329
    [Google Scholar]
  117. Suzuki I., Simon W. J., Slabas A. R.. 2006; The heat shock response of Synechocystis sp. PCC 6803 analysed by transcriptomics and proteomics. J Exp Bot57:1573–1578
    [Google Scholar]
  118. Tang Y. J., Martin H. G., Myers S., Rodriguez S., Baidoo E. E., Keasling J. D.. 2009a; Advances in analysis of microbial metabolic fluxes via 13C isotopic labeling. Mass Spectrom Rev28:362–375
    [Google Scholar]
  119. Tang Y. J., Martin H. G., Dehal P. S., Deutschbauer A., Llora X., Meadows A., Arkin A., Keasling J. D.. 2009b; Metabolic flux analysis of Shewanella spp. reveals evolutionary robustness in central carbon metabolism. Biotechnol Bioeng102:1161–1169
    [Google Scholar]
  120. Ter Kuile B. H., Westerhoff H. V.. 2001; Transcriptome meets metabolome: hierarchical and metabolic regulation of the glycolytic pathway. FEBS Lett500:169–171
    [Google Scholar]
  121. Tibshirani R.. 1996; Regression shrinkage and selection via the lasso. J Roy Statist Soc Ser B Methodol58:267–288
    [Google Scholar]
  122. Tong A. H., Lesage G., Bader G. D., Ding H., Xu H., Xin X., Young J., Berriz G. F., Brost R. L.. other authors 2004; Global mapping of the yeast genetic interaction network. Science303:808–813
    [Google Scholar]
  123. Torres-García W., Zhang W., Runger G. C., Johnson R. H., Meldrum D. R.. 2009; Integrative analysis of transcriptomic and proteomic data of Desulfovibrio vulgaris: a non-linear model to predict abundance of undetected proteins. Bioinformatics25:1905–1914
    [Google Scholar]
  124. Toya Y., Ishii N., Hirasawa T., Naba M., Hirai K., Sugawara K., Igarashi S., Shimizu K., Tomita M., Soga T.. 2007; Direct measurement of isotopomer of intracellular metabolites using capillary electrophoresis time-of-flight mass spectrometry for efficient metabolic flux analysis. J Chromatogr A 1159;134–141
    [Google Scholar]
  125. Trauger S. A., Kalisak E., Kalisiak J., Morita H., Weinberg M. V., Menon A. L., Poole F. L. II, Adams M. W., Siuzdak G.. 2008; Correlating the transcriptome, proteome, and metabolome in the environmental adaptation of a hyperthermophile. J Proteome Res7:1027–1035
    [Google Scholar]
  126. Tweeddale H., Notley-McRobb L., Ferenci T.. 1998; Effect of slow growth on metabolism of Escherichia coli, as revealed by global metabolite pool (metabolome) analysis. J Bacteriol180:5109–5116
    [Google Scholar]
  127. Tweeddale H., Notley-McRobb L., Ferenci T.. 1999; Assessing the effect of reactive oxygen species on Escherichia coli using a metabolome approach. Redox Rep4:237–241
    [Google Scholar]
  128. Typas A., Nichols R. J., Siegele D. A., Shales M., Collins S. R., Lim B., Braberg H., Yamamoto N., Takeuchi R.. other authors 2008; High-throughput, quantitative analyses of genetic interactions in E. coli. Nat Methods5:781–787
    [Google Scholar]
  129. Urbanczyk-Wochniak E., Luedemann A., Kopka J., Selbig J., Roessner-Tunali U., Willmitzer L., Fernie A. R.. 2003; Parallel analysis of transcript and metabolic profiles: a new approach in systems biology. EMBO Rep4:989–993
    [Google Scholar]
  130. Urbanczyk-Wochniak E., Willmitzer L., Fernie A. R.. 2007; Integrating profiling data: using linear correlation to reveal coregulation of transcript and metabolites. Methods Mol Biol358:77–85
    [Google Scholar]
  131. Uyar E., Kurokawa K., Yoshimura M., Ishikawa S., Ogasawara N., Oshima T.. 2009; Differential binding profiles of StpA in wild-type and hns mutant cells: a comparative analysis of cooperative partners by chromatin immunoprecipitation-microarray analysis. J Bacteriol191:2388–2391
    [Google Scholar]
  132. van der Werf M. J., Jellema R. H., Hankemeier T.. 2005; Microbial metabolomics: replacing trial-and-error by the unbiased selection and ranking of targets. J Ind Microbiol Biotechnol32:234–252
    [Google Scholar]
  133. Wan X. F., Verberkmoes N. C., McCue L. A., Stanek D., Connelly H., Hauser L. J., Wu L., Liu X., Yan T.. other authors 2004; Transcriptomic and proteomic characterization of the Fur modulon in the metal-reducing bacterium Shewanella oneidensis. J Bacteriol186:8385–8400
    [Google Scholar]
  134. Ward N., Fraser C. M.. 2005; How genomics has affected the concept of microbiology. Curr Opin Microbiol8:564–571
    [Google Scholar]
  135. Washburn M. P., Koller A., Oshiro G., Ulaszek G., Plouffe D., Deciu C., Winzeler E., Yates J. R. III. 2003; Protein pathway and complex clustering of correlated mRNA and protein expression analyses in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A100:3107–3112
    [Google Scholar]
  136. Waters K. M., Pounds J. G., Thrall B. D.. 2006; Data merging for integrated microarray and proteomic analysis. Brief Funct Genomic Proteomic5:261–272
    [Google Scholar]
  137. Watson M.. 2005; ProGenExpress: visualization of quantitative data on prokaryotic genomes. BMC Bioinformatics6:98
    [Google Scholar]
  138. Webb-Robertson B. J., McCue L. A., Beagley N., McDermott J. E., Wunschel D. S., Varnum S. M., Hu J. Z., Isern N. G., Buchko G. W.. other authors 2009; A Bayesian integration model of high-throughput proteomics and metabolomics data for improved early detection of microbial infections. Pac Symp Biocomput451–463
    [Google Scholar]
  139. Weckwerth W., Morgenthal K.. 2005; Metabolomics: from pattern recognition to biological interpretation. Drug Discov Today10:1551–1558
    [Google Scholar]
  140. Weckwerth W., Wenzel K., Fiehn O.. 2004; Process for the integrated extraction, identification and quantification of metabolites, proteins and RNA to reveal their co-regulation in biochemical networks. Proteomics4:78–83
    [Google Scholar]
  141. Wienkoop S., Morgenthal K., Wolschin F., Scholz M., Selbig J., Weckwerth W.. 2008; Integration of metabolomic and proteomic phenotypes. Mol Cell Proteomics7:1725–1736
    [Google Scholar]
  142. Wilkins M. R., Pasquali C., Appel R. D., Ou K., Golaz O., Sanchez J., Yan J. X., Gooley A. A., Hughes G.. other authors 1996; From proteins to proteomes: large scale protein identification by two-dimensional electrophoresis and amino acid analysis. Biotechnology (N Y) 14:61–65
    [Google Scholar]
  143. Wolff S., Otto A., Albrecht D., Zeng J. S., Büttner K., Glückmann M., Hecker M., Becher D.. 2006; Gel-free and gel-based proteomics in Bacillus subtilis: a comparative study. Mol Cell Proteomics5:1183–1192
    [Google Scholar]
  144. Yan W., Hwang D., Aebersold R.. 2008; Quantitative proteomic analysis to profile dynamic changes in the spatial distribution of cellular proteins. Methods Mol Biol432:389–401
    [Google Scholar]
  145. Yang S., Tschaplinski T. J., Engle N. L., Carroll S. L., Martin S. L., Davison B. H., Palumbo A. V., Rodriguez M. Jr, Brown S. D.. 2009; Transcriptomic and metabolomic profiling of Zymomonas mobilis during aerobic and anaerobic fermentations. BMC Genomics10:34
    [Google Scholar]
  146. Ye R. W., Wang T., Bedzyk L., Croker K. M.. 2001; Applications of DNA microarrays in microbial systems. J Microbiol Methods47:257–272
    [Google Scholar]
  147. Yoon S. H., Han M. J., Lee S. Y., Jeong K. J., Yoo J. S.. 2003; Combined transcriptome and proteome analysis of Escherichia coli during high cell density culture. Biotechnol Bioeng81:753–767
    [Google Scholar]
  148. Yu E. Z., Burba A. E., Gerstein M.. 2007; PARE: a tool for comparing protein abundance and mRNA expression data. BMC Bioinformatics8:309
    [Google Scholar]
  149. Zhang W., Gritsenko M. A., Moore R. J., Culley D. E., Nie L., Petritis K., Strittmat-ter E. F., Camp D. G. II, Smith R. D., Brockman F. J.. 2006a; A proteomic view of Desulfovibrio vulgaris metabolism as determined by liquid chromatography coupled with tandem mass spectrometry. Proteomics6:4286–4299
    [Google Scholar]
  150. Zhang W., Culley D. E., Scholten J. C., Hogan M., Vitiritti L., Brockman F. J.. 2006b; Global transcriptomic analysis of Desulfovibrio vulgaris on different electron donors. Antonie Van Leeuwenhoek89:221–237
    [Google Scholar]
  151. Zhao B., Poh C. L.. 2008; Insights into environmental bioremediation by microorganisms through functional genomics and proteomics. Proteomics8:874–881
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.034793-0
Loading
/content/journal/micro/10.1099/mic.0.034793-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error