1887

Abstract

Carbon monoxide dehydrogenase (CO-DH) is an enzyme catalysing the oxidation of CO to carbon dioxide in sp. strain JC1 DSM 3803. Cloning of the genes encoding CO-DH from the bacterium and sequencing of overlapping clones revealed the presence of duplicated sets of genes for three subunits of the enzyme, and , in operons, and a cluster of genes encoding proteins that may be involved in CO metabolism, including a possible transcriptional regulator. Phylogenetic analysis based on the amino acid sequences of large subunits of CO-DH suggested that the CO-DHs of sp. JC1 and other mycobacteria are distinct from those of other types of bacteria. The growth phenotype of mutant strains lacking genes and of a corresponding complemented strain showed that both of the duplicated sets of CO-DH genes were functional in this bacterium. Transcriptional fusions of the genes with revealed that the operons were expressed regardless of the presence of CO and were further inducible by CO. Primer extension analysis indicated two promoters, one expressed in the absence of CO and the other induced in the presence of CO. This is believed to be the first report to show the presence of multiple copies of CO-DH genes with identical sequences and in close proximity in carboxydobacteria, and to present the genetic evidence for the function of the genes in mycobacteria.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.034769-0
2010-04-01
2019-10-17
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/4/999.html?itemId=/content/journal/micro/10.1099/mic.0.034769-0&mimeType=html&fmt=ahah

References

  1. Agarwal, N. & Tyagi, A. K. ( 2006; ). Mycobacterial transcriptional signals: requirements for recognition by RNA polymerase and optimal transcriptional activity. Nucleic Acids Res 34, 4245–4257.[CrossRef]
    [Google Scholar]
  2. Akhter, Y., Yellaboina, S., Farhana, A., Ranjan, A., Ahmed, N. & Hasnain, S. E. ( 2008; ). Genome scale portrait of cAMP-receptor protein (CRP) regulons in mycobacteria points to their role in pathogenesis. Gene 407, 148–158.[CrossRef]
    [Google Scholar]
  3. Bai, G., McCue, L. A. & McDonough, K. A. ( 2005; ). Characterization of Mycobacterium tuberculosis Rv3676 (CRPMt), a cyclic AMP receptor protein-like DNA binding protein. J Bacteriol 187, 7795–7804.[CrossRef]
    [Google Scholar]
  4. Cho, J. W., Yim, H. S. & Kim, Y. M. ( 1985; ). Acinetobacter isolate growing with carbon monoxide. Kor J Microbiol 23, 1–8.
    [Google Scholar]
  5. Dobbek, H., Gremer, L., Meyer, O. & Huber, R. ( 1999; ). Crystal structure and mechanism of CO dehydrogenase, a molybdo iron-sulfur flavoprotein containing S-selanylcysteine. Proc Natl Acad Sci U S A 96, 8884–8889.[CrossRef]
    [Google Scholar]
  6. Fuhrmann, S., Ferner, M., Jeffke, T., Henne, A., Gottschalk, G. & Meyer, O. ( 2003; ). Complete nucleotide sequence of the circular megaplasmid pHCG3 of Oligotropha carboxidovorans: function in the chemolithoautotrophic utilization of CO, H2 and CO2. Gene 322, 67–75.[CrossRef]
    [Google Scholar]
  7. Howard, N. S., Gomez, J. E., Ko, C. & Bishai, W. R. ( 1995; ). Color selection with hygromycin-resistance-based Escherichia coli-mycobacterial shuttle vector. Gene 166, 181–182.[CrossRef]
    [Google Scholar]
  8. Kang, B. S. & Kim, Y. M. ( 1999; ). Cloning and molecular characterization of the genes for carbon monoxide dehydrogenase and localization of molybdopterin, flavin adenine dinucleotide, and iron-sulfur centers in the enzyme of Hydrogenophaga pseudoflava. J Bacteriol 181, 5581–5590.
    [Google Scholar]
  9. Kim, Y. M. & Hegeman, G. D. ( 1981; ). Purification and some properties of carbon monoxide dehydrogenase from Pseudomonas carboxydohydrogena. J Bacteriol 148, 904–911.
    [Google Scholar]
  10. Kim, Y. M. & Hegeman, G. D. ( 1983; ). Oxidation of carbon monoxide by bacteria. Int Rev Cytol 81, 1–32.
    [Google Scholar]
  11. Kim, Y. J. & Kim, Y. M. ( 1989; ). Induction of carbon monoxide dehydrogenase during heterotrophic growth of Acinetobacter sp. strain JC1 DSM 3803 in the presence of carbon monoxide. FEMS Microbiol Lett 59, 207–210.[CrossRef]
    [Google Scholar]
  12. Kim, K. S., Ro, Y. T. & Kim, Y. M. ( 1989; ). Purification and some properties of carbon monoxide dehydrogenase from Acinetobacter sp. strain JC1 DSM 3803. J Bacteriol 171, 958–964.
    [Google Scholar]
  13. King, G. M. ( 2003; ). Uptake of carbon monoxide and hydrogen at environmentally relevant concentrations by mycobacteria. Appl Environ Microbiol 69, 7266–7272.[CrossRef]
    [Google Scholar]
  14. King, G. M. & Weber, C. F. ( 2007; ). Distribution, diversity and ecology of aerobic CO-oxidizing bacteria. Nat Rev Microbiol 5, 107–118.[CrossRef]
    [Google Scholar]
  15. Kraut, M., Hugendieck, I., Herwig, S. & Meyer, O. ( 1989; ). Homology and distribution of CO dehydrogenase structural genes in carboxydotrophic bacteria. Arch Microbiol 152, 335–341.[CrossRef]
    [Google Scholar]
  16. Kumar, S., Tamura, K. & Nei, M. ( 2004; ). mega3: integrated software for Molecular Evolutionary Analysis and sequence alignment. Brief Bioinform 5, 150–163.[CrossRef]
    [Google Scholar]
  17. Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., Valentin, F., Wallace, I. M., Wilm, A. & other authors ( 2007; ). clustal w and clustal_x version 2.0. Bioinformatics 23, 2947–2948.[CrossRef]
    [Google Scholar]
  18. Marchler-Bauer, A., Anderson, J. B., Derbyshire, M. K., DeWeese-Scott, C., Gonzales, N. R., Gwadz, M., Hao, L., He, S., Hurwitz, D. I. & other authors ( 2007; ). cdd: a conserved domain database for interactive domain family analysis. Nucleic Acids Res 35, D237–D240.[CrossRef]
    [Google Scholar]
  19. Meyer, O., Frunzke, K. & Mörsdorf, G. ( 1993; ). Biochemistry of aerobic utilization of carbon monoxide. In Microbial Growth on C1 Compounds, pp. 433–459. Edited by J. C. Murrell & D. P. Kelly. Andover, MA: Intercept.
  20. Miller, J. H. ( 1972; ). Experiments in Molecular Genetics. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  21. Parish, T. & Stoker, N. G. ( 1998; ). Electroporation of mycobacteria. In Methods in Molecular Biology, vol. 101, Mycobacteria Protocols, pp. 129–144. Edited by T. Parish & N. G. Stoker. Totowa, NJ: Humana Press.
  22. Park, S. W., Hwang, E. H., Park, H., Kim, J. A., Heo, J., Lee, K. H., Song, T., Kim, E., Ro, Y. T. & other authors ( 2003; ). Growth of mycobacteria on carbon monoxide and methanol. J Bacteriol 185, 142–147.[CrossRef]
    [Google Scholar]
  23. Park, S. W., Song, T., Kim, S. Y., Kim, E., Oh, J. I., Eom, C. Y. & Kim, Y. M. ( 2007; ). Carbon monoxide dehydrogenase in mycobacteria possesses a nitric oxide dehydrogenase activity. Biochem Biophys Res Commun 362, 449–453.[CrossRef]
    [Google Scholar]
  24. Pearson, D. M., O'Reilly, C., Colby, J. & Black, G. W. ( 1994; ). DNA sequence of the cut A, B and C genes, encoding the molybdenum containing hydroxylase carbon monoxide dehydrogenase, from Pseudomonas thermocarboxydovorans strain C2. Biochim Biophys Acta 1188, 432–438.[CrossRef]
    [Google Scholar]
  25. Pelzmann, A., Ferner, M., Gnida, M., Meyer-Klaucke, W., Maisel, T. & Meyer, O. ( 2009; ). The CoxD protein of Oligotropha carboxidovorans is a predicted AAA+ ATPase chaperone involved in the biogenesis of the CO dehydrogenase [CuSMoO2] cluster. J Biol Chem 284, 9578–9586.[CrossRef]
    [Google Scholar]
  26. Sambrook, J. & Russell, D. W. ( 2001; ). Molecular Cloning: a Laboratory Manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  27. Santiago, B., Schübel, U., Egelseer, C. & Meyer, O. ( 1999; ). Sequence analysis, characterization and CO-specific transcription of the cox gene cluster on the megaplasmid pHCG3 of Oligotropha carboxidovorans. Gene 236, 115–124.[CrossRef]
    [Google Scholar]
  28. Schell, M. A. ( 1993; ). Molecular biology of the LysR family of transcriptional regulators. Annu Rev Microbiol 47, 597–626.[CrossRef]
    [Google Scholar]
  29. Schübel, U., Kraut, M., Mörsdorf, G. & Meyer, O. ( 1995; ). Molecular characterization of the gene cluster coxMSL encoding the molybdenum-containing carbon monoxide dehydrogenase of Oligotropha carboxidovorans. J Bacteriol 177, 2197–2203.
    [Google Scholar]
  30. Sherman, D. R., Voskuil, M., Schnappinger, D., Liao, R., Harrell, M. I. & Schoolnik, G. K. ( 2001; ). Regulation of the Mycobacterium tuberculosis hypoxic response gene encoding α-crystallin. Proc Natl Acad Sci U S A 98, 7534–7539.[CrossRef]
    [Google Scholar]
  31. Song, T., Lee, H., Park, Y. H., Kim, E., Ro, Y. T., Kim, S. W. & Kim, Y. M. ( 2002; ). Reclassification of a carboxydobacterium, Acinetobacter sp. strain JC1 DSM 3803, as Mycobacterium sp. strain JC1 DSM 3803. J Microbiol 40, 237–240.
    [Google Scholar]
  32. Walkenhorst, H. M., Hemschemeier, S. K. & Eichenlaub, R. ( 1995; ). Molecular analysis of the molybdate uptake operon, modABCD, of Escherichia coli and modR, a regulatory gene. Microbiol Res 150, 347–361.[CrossRef]
    [Google Scholar]
  33. Wilson, K. ( 1989; ). Preparation of genomic DNA from bacteria. In Current Protocols in Molecular Biology, pp. 2.4.1–2.4.5. Edited by F. A. Ausubel, R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith & K. Struhl. New York: Greene Publishing Associates and Wiley-Interscience.
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.034769-0
Loading
/content/journal/micro/10.1099/mic.0.034769-0
Loading

Data & Media loading...

Supplements

[PDF](43 KB)

PDF

Genomic co-localization of the sequenced regions of lambda EMBL3-2 and lambda EMBL3-4 as revealed by PCR analysis [PDF](440 KB)

PDF

Southern blot analysis of lambda EMBL3-5H2 carrying the duplicated copies of operons [PDF](524 KB)

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error