1887

Abstract

RNA interference (RNAi) is a sequence-specific post-transcriptional gene silencing system that downregulates target gene expression. Here, we provide several lines of evidence for RNA silencing in the industrial -lactam antibiotic producer using the reporter gene under the control of the constitutive promoter or the inducible promoter. The functional RNAi system was verified by detection of siRNAs that hybridized exclusively with gene-specific P-labelled RNA probes. Moreover, when RNAi was used to silence the endogenous morphogene that controls conidiophore development, a dramatic reduction in the formation of conidiospores was observed in 47 % of the corresponding transformants. Evidence that RNAi in is dependent on a Dicer peptide was provided with a strain lacking . In the ΔPcdcl2 background, silencing of the gene was tested. None of the transformants analysed showed a developmental defect. The applicability of the RNAi system in was finally demonstrated by silencing the gene to increase homologous recombination frequency. This led to the generation of single and double knockout mutants.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.032763-0
2009-12-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/12/3946.html?itemId=/content/journal/micro/10.1099/mic.0.032763-0&mimeType=html&fmt=ahah

References

  1. Adams, T. H., Boylan, M. T. & Timberlake, W. E. ( 1988; ). brlA is necessary and sufficient to direct conidiophore development in Aspergillus nidulans. Cell 54, 353–362.[CrossRef]
    [Google Scholar]
  2. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. ( 1990; ). Basic local alignment search tool. J Mol Biol 215, 403–410.[CrossRef]
    [Google Scholar]
  3. Barton, L. M. & Prade, R. A. ( 2008; ). Inducible RNA interference of brlAβ in Aspergillus nidulans. Eukaryot Cell 7, 2004–2007.[CrossRef]
    [Google Scholar]
  4. Bromley, M., Gordon, C., Rovira-Graells, N. & Oliver, J. ( 2006; ). The Aspergillus fumigatus cellobiohydrolase B (cbhB) promoter is tightly regulated and can be exploited for controlled protein expression and RNAi. FEMS Microbiol Lett 264, 246–254.[CrossRef]
    [Google Scholar]
  5. Bullock, W. O., Fernandez, J. M. & Short, J. M. ( 1987; ). XL1-Blue: a high efficiency plasmid transforming recA Escherichia coli strain with β-galactosidase selection. Biotechniques 5, 376–379.
    [Google Scholar]
  6. Caracuel-Rios, Z. & Talbot, N. J. ( 2008; ). Silencing the crowd: high-throughput functional genomics in Magnaporthe oryzae. Mol Microbiol 68, 1341–1344.[CrossRef]
    [Google Scholar]
  7. Casqueiro, J., Gutiérrez, S., Bañuelos, O., Hijarrubia, M. J. & Martín, J. F. ( 1999; ). Gene targeting in Penicillium chrysogenum: disruption of the lys2 gene leads to penicillin overproduction. J Bacteriol 181, 1181–1188.
    [Google Scholar]
  8. Catalanotto, C., Pallotta, M., ReFalo, P., Sachs, M. S., Vayssie, L., Macino, G. & Cogoni, C. ( 2004; ). Redundancy of the two dicer genes in transgene-induced posttranscriptional gene silencing in Neurospora crassa. Mol Cell Biol 24, 2536–2545.[CrossRef]
    [Google Scholar]
  9. Clutterbuck, A. J. ( 1969; ). A mutational analysis of conidial development in Aspergillus nidulans. Genetics 63, 317–327.
    [Google Scholar]
  10. Dalmay, T., Hamilton, A., Mueller, E. & Baulcombe, D. C. ( 2000; ). Potato virus X amplicons in Arabidopsis mediate genetic and epigenetic gene silencing. Plant Cell 12, 369–379.[CrossRef]
    [Google Scholar]
  11. de Jong, J. F., Deelstra, H. J., Wösten, H. A. & Lugones, L. G. ( 2006; ). RNA-mediated gene silencing in monokaryons and dikaryons of Schizophyllum commune. Appl Environ Microbiol 72, 1267–1269.[CrossRef]
    [Google Scholar]
  12. Dlakic, M. ( 2006; ). DUF283 domain of Dicer proteins has a double-stranded RNA-binding fold. Bioinformatics 22, 2711–2714.[CrossRef]
    [Google Scholar]
  13. Fierro, F., García-Estrada, C., Castillo, N. I., Rodriguez, R., Velasco-Conde, T. & Martín, J. F. ( 2006; ). Transcriptional and bioinformatic analysis of the 56.8 kb DNA region amplified in tandem repeats containing the penicillin gene cluster in Penicillium chrysogenum. Fungal Genet Biol 43, 618–629.[CrossRef]
    [Google Scholar]
  14. Fitzgerald, A., van Kan, J. A. & Plummer, K. M. ( 2004; ). Simultaneous silencing of multiple genes in the apple scab fungus, Venturia inaequalis, by expression of RNA with chimeric inverted repeats. Fungal Genet Biol 41, 963–971.[CrossRef]
    [Google Scholar]
  15. Gems, D., Johnstone, I. L. & Clutterbuck, A. J. ( 1991; ). An autonomously replicating plasmid transforms Aspergillus nidulans at high frequency. Gene 98, 61–67.[CrossRef]
    [Google Scholar]
  16. Goldoni, M., Azzalin, G., Macino, G. & Cogoni, C. ( 2004; ). Efficient gene silencing by expression of double stranded RNA in Neurospora crassa. Fungal Genet Biol 41, 1016–1024.[CrossRef]
    [Google Scholar]
  17. Haas, H., Angermayr, K., Zadra, I. & Stöffler, G. ( 1997; ). Overexpression of nreB, a new GATA factor-encoding gene of Penicillium chrysogenum, leads to repression of the nitrate assimilatory gene cluster. J Biol Chem 272, 22576–22582.[CrossRef]
    [Google Scholar]
  18. Hammond, T. M., Bok, J. W., Andrewski, M. D., Reyes-Dominguez, Y., Scazzocchio, C. & Keller, N. P. ( 2008; ). RNA silencing gene truncation in the filamentous fungus Aspergillus nidulans. Eukaryot Cell 7, 339–349.[CrossRef]
    [Google Scholar]
  19. Hoff, B., Pöggeler, S. & Kück, U. ( 2008; ). Eighty years after its discovery, Fleming's Penicillium strain discloses the secret of its sex. Eukaryot Cell 7, 465–470.[CrossRef]
    [Google Scholar]
  20. Hoff, B., Kamerewerd, J., Sigl, C., Zadra, I. & Kück, U. ( 2009; ). Homologous recombination in the antibiotic producer Penicillium chrysogenum: strain ΔPcku70 shows up-regulation of genes from the HOG pathway. Appl Microbiol Biotechnol doi:10.1007/s00253-009-2168-4..
    [Google Scholar]
  21. Janus, D., Hoff, B., Hofmann, E. & Kück, U. ( 2007; ). An efficient fungal RNA-silencing system using the DsRed reporter gene. Appl Environ Microbiol 73, 962–970.[CrossRef]
    [Google Scholar]
  22. Jekosch, K. & Kück, U. ( 2000; ). Glucose dependent transcriptional expression of the cre1 gene in Acremonium chrysogenum strains showing different levels of cephalosporin C production. Curr Genet 37, 388–395.[CrossRef]
    [Google Scholar]
  23. Kadotani, N., Nakayashiki, H., Tosa, Y. & Mayama, S. ( 2003; ). RNA silencing in the phytopathogenic fungus Magnaporthe oryzae. Mol Plant Microbe Interact 16, 769–776.[CrossRef]
    [Google Scholar]
  24. Kadotani, N., Nakayashiki, H., Tosa, Y. & Mayama, S. ( 2004; ). One of the two Dicer-like proteins in the filamentous fungi Magnaporthe oryzae genome is responsible for hairpin RNA-triggered RNA silencing and related small interfering RNA accumulation. J Biol Chem 279, 44467–44474.[CrossRef]
    [Google Scholar]
  25. Khalaj, V., Eslami, H., Azizi, M., Rovira-Graells, N. & Bromley, M. ( 2007; ). Efficient downregulation of alb1 gene using an AMA1-based episomal expression of RNAi construct in Aspergillus fumigatus. FEMS Microbiol Lett 270, 250–254.[CrossRef]
    [Google Scholar]
  26. Kubodera, T., Yamashita, N. & Nishimura, A. ( 2000; ). Pyrithiamine resistance gene (ptrA) of Aspergillus oryzae: cloning, characterization and application as a dominant selectable marker for transformation. Biosci Biotechnol Biochem 64, 1416–1421.[CrossRef]
    [Google Scholar]
  27. Kubodera, T., Yamashita, N. & Nishimura, A. ( 2002; ). Transformation of Aspergillus sp. and Trichoderma reesei using the pyrithiamine resistance gene (ptrA) of Aspergillus oryzae. Biosci Biotechnol Biochem 66, 404–406.[CrossRef]
    [Google Scholar]
  28. Liu, H., Cottrell, T. R., Pierini, L. M., Goldman, W. E. & Doering, T. L. ( 2002; ). RNA interference in the pathogenic fungus Cryptococcus neoformans. Genetics 160, 463–470.
    [Google Scholar]
  29. Mah, J. H. & Yu, J. H. ( 2006; ). Upstream and downstream regulation of asexual development in Aspergillus fumigatus. Eukaryot Cell 5, 1585–1595.[CrossRef]
    [Google Scholar]
  30. Marchler-Bauer, A., Anderson, J. B., Derbyshire, M. K., DeWeese-Scott, C., Gonzales, N. R., Gwadz, M., Hao, L., He, S., Hurwitz, D. I. & other authors ( 2007; ). CDD: a conserved domain database for interactive domain family analysis. Nucleic Acids Res 35, D237–D240.[CrossRef]
    [Google Scholar]
  31. Matityahu, A., Hadar, Y., Dosoretz, C. G. & Belinky, P. A. ( 2008; ). Gene silencing by RNA interference in the white rot fungus Phanerochaete chrysosporium. Appl Environ Microbiol 74, 5359–5365.[CrossRef]
    [Google Scholar]
  32. Meister, G. & Tuschl, T. ( 2004; ). Mechanisms of gene silencing by double-stranded RNA. Nature 431, 343–349.[CrossRef]
    [Google Scholar]
  33. Minut, W., Tudzynski, P. & Esser, K. ( 1982; ). Extrachromosomal genetics of Cephalosporium acremonium. Curr Genet 5, 227–231.[CrossRef]
    [Google Scholar]
  34. Nakayashiki, H. & Nguyen, Q. B. ( 2008; ). RNA interference: roles in fungal biology. Curr Opin Microbiol 11, 494–502.[CrossRef]
    [Google Scholar]
  35. Nakayashiki, H., Hanada, S., Nguyen, B. Q., Kadotani, N., Tosa, Y. & Mayama, S. ( 2005; ). RNA silencing as a tool for exploring gene function in ascomycete fungi. Fungal Genet Biol 42, 275–283.[CrossRef]
    [Google Scholar]
  36. Nakayashiki, H., Kadotani, N. & Mayama, S. ( 2006; ). Evolution and diversification of RNA silencing proteins in fungi. J Mol Evol 63, 127–135.[CrossRef]
    [Google Scholar]
  37. Naranjo, L., Martín de Valmaseda, E., Casqueiro, J., Ullán, R. V., Lamas-Maceiras, M., Banuelos, O. & Martín, J. F. ( 2004; ). Inactivation of the lys7 gene, encoding saccharopine reductase in Penicillium chrysogenum, leads to accumulation of the secondary metabolite precursors piperideine-6-carboxylic acid and pipecolic acid from alpha-aminoadipic acid. Appl Environ Microbiol 70, 1031–1039.[CrossRef]
    [Google Scholar]
  38. Nguyen, Q. B., Kadotani, N., Kasahara, S., Tosa, Y., Mayama, S. & Nakayashiki, H. ( 2008; ). Systematic functional analysis of calcium-signalling proteins in the genome of the rice-blast fungus, Magnaporthe oryzae, using a high-throughput RNA-silencing system. Mol Microbiol 68, 1348–1365.[CrossRef]
    [Google Scholar]
  39. Nicolás, F. E., de Haro, J. P., Torres-Martínez, S. & Ruiz-Vázquez, R. M. ( 2007; ). Mutants defective in a Mucor circinelloides dicer-like gene are not compromised in siRNA silencing but display developmental defects. Fungal Genet Biol 44, 504–516.[CrossRef]
    [Google Scholar]
  40. Nowrousian, M., Ringelberg, C., Dunlap, J. C., Loros, J. J. & Kück, U. ( 2005; ). Cross-species microarray hybridization to identify developmentally regulated genes in the filamentous fungus Sordaria macrospora. Mol Genet Genomics 273, 137–149.[CrossRef]
    [Google Scholar]
  41. Oliveira, J. M., van der Veen, D., de Graaff, L. H. & Qin, L. ( 2008; ). Efficient cloning system for construction of gene silencing vectors in Aspergillus niger. Appl Microbiol Biotechnol 80, 917–924.[CrossRef]
    [Google Scholar]
  42. Romano, N. & Macino, G. ( 1992; ). Quelling: transient inactivation of gene expression in Neurospora crassa by transformation with homologous sequences. Mol Microbiol 6, 3343–3353.[CrossRef]
    [Google Scholar]
  43. Sambrook, J. & Russell, D. W. ( 2001; ). Molecular Cloning. A Laboratory Manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  44. Segers, G. C., Zhang, X., Deng, F., Sun, Q. & Nuss, D. L. ( 2007; ). Evidence that RNA silencing functions as an antiviral defense mechanism in fungi. Proc Natl Acad Sci U S A 104, 12902–12906.[CrossRef]
    [Google Scholar]
  45. Shafran, H., Miyara, I., Eshed, R., Prusky, D. & Sherman, A. ( 2008; ). Development of new tools for studying gene function in fungi based on the Gateway system. Fungal Genet Biol 45, 1147–1154.[CrossRef]
    [Google Scholar]
  46. Snoek, I. S., van der Krogt, Z. A., Touw, H., Kerkman, R., Pronk, J. T., Bovenberg, R. A., van den Berg, M. A. & Daran, J. M. ( 2009; ). Construction of an hdfA Penicillium chrysogenum strain impaired in non-homologous end-joining and analysis of its potential for functional analysis studies. Fungal Genet Biol 46, 418–426.[CrossRef]
    [Google Scholar]
  47. Takeno, S., Sakuradani, E., Tomi, A., Inohara-Ochiai, M., Kawashima, H., Ashikari, T. & Shimizu, S. ( 2005; ). Improvement of the fatty acid composition of an oil-producing filamentous fungus, Mortierella alpina 1S-4, through RNA interference with Δ12-desaturase gene expression. Appl Environ Microbiol 71, 5124–5128.[CrossRef]
    [Google Scholar]
  48. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G. ( 1997; ). The clustal_x Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25, 4876–4882.[CrossRef]
    [Google Scholar]
  49. Ullán, R. V., Godio, R. P., Teijeira, F., Vaca, I., García-Estrada, C., Feltrer, R., Kosalkova, K. & Martín, J. F. ( 2008; ). RNA-silencing in Penicillium chrysogenum and Acremonium chrysogenum: validation studies using β-lactam genes expression. J Microbiol Methods 75, 209–218.[CrossRef]
    [Google Scholar]
  50. van den Berg, M. A., Albang, R., Albermann, K., Badger, J. H., Daran, J. M., Driessen, A. J., Garcia-Estrada, C., Fedorova, N. D., Harris, D. M. & other authors ( 2008; ). Genome sequencing and analysis of the filamentous fungus Penicillium chrysogenum. Nat Biotechnol 26, 1161–1168.[CrossRef]
    [Google Scholar]
  51. Windhofer, F., Hauck, K., Catcheside, D. E., Kück, U. & Kempken, F. ( 2002; ). Ds-like restless deletion derivatives occur in Tolypocladium inflatum and two foreign hosts, Neurospora crassa and Penicillium chrysogenum. Fungal Genet Biol 35, 171–182.[CrossRef]
    [Google Scholar]
  52. Yamada, O., Lee, B. R., Gomi, K. & Iimura, Y. ( 1999; ). Cloning and functional analysis of the Aspergillus oryzae conidiation regulator gene brlA by its disruption and misscheduled expression. J Biosci Bioeng 87, 424–429.[CrossRef]
    [Google Scholar]
  53. Yamada, O., Ikeda, R., Ohkita, Y., Hayashi, R., Sakamoto, K. & Akita, O. ( 2007; ). Gene silencing by RNA interference in the koji mold Aspergillus oryzae. Biosci Biotechnol Biochem 71, 138–144.[CrossRef]
    [Google Scholar]
  54. Zadra, I., Abt, B., Parson, W. & Haas, H. ( 2000; ). xylP promoter-based expression system and its use for antisense downregulation of the Penicillium chrysogenum nitrogen regulator NRE. Appl Environ Microbiol 66, 4810–4816.[CrossRef]
    [Google Scholar]
  55. Zhang, S., Sakuradani, E. & Shimizu, S. ( 2007; ). Identification of a sterol Δ7 reductase gene involved in desmosterol biosynthesis in Mortierella alpina 1S-4. Appl Environ Microbiol 73, 1736–1741.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.032763-0
Loading
/content/journal/micro/10.1099/mic.0.032763-0
Loading

Data & Media loading...

Oligonucleotides used in this study [ PDF] (20 kb) Plasmids used for RNAi analysis, generation of knockout strain, and transcription [ PDF] (67 kb) Amino acid alignment of Pcdcl1 (Pc21g06890) with homologous proteins of different filamentous fungi [ PDF] (172 kb) Amino acid alignment of Pcdcl2 (Pc12g13700) with homologous proteins of different filamentous fungi [ PDF] (176 kb)

PDF

Oligonucleotides used in this study [ PDF] (20 kb) Plasmids used for RNAi analysis, generation of knockout strain, and transcription [ PDF] (67 kb) Amino acid alignment of Pcdcl1 (Pc21g06890) with homologous proteins of different filamentous fungi [ PDF] (172 kb) Amino acid alignment of Pcdcl2 (Pc12g13700) with homologous proteins of different filamentous fungi [ PDF] (176 kb)

PDF

Oligonucleotides used in this study [ PDF] (20 kb) Plasmids used for RNAi analysis, generation of knockout strain, and transcription [ PDF] (67 kb) Amino acid alignment of Pcdcl1 (Pc21g06890) with homologous proteins of different filamentous fungi [ PDF] (172 kb) Amino acid alignment of Pcdcl2 (Pc12g13700) with homologous proteins of different filamentous fungi [ PDF] (176 kb)

PDF

Oligonucleotides used in this study [ PDF] (20 kb) Plasmids used for RNAi analysis, generation of knockout strain, and transcription [ PDF] (67 kb) Amino acid alignment of Pcdcl1 (Pc21g06890) with homologous proteins of different filamentous fungi [ PDF] (172 kb) Amino acid alignment of Pcdcl2 (Pc12g13700) with homologous proteins of different filamentous fungi [ PDF] (176 kb)

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error