1887

Abstract

Flagellar motility and its glycosylation are indispensable for the virulence of pv. 6605. Six serine residues of the flagellin protein at positions 143, 164, 176, 183, 193 and 201 are glycosylated, and the glycan structure at 201 was determined to consist of a trisaccharide of two -rhamnosyl residues and a modified 4-amino-4,6-dideoxyglucosyl (viosamine) residue. To investigate the glycan structures attached to the other serine residues and to identify the glycans important for virulence, Ser/Ala-substituted mutants were generated. Six mutant strains that each retained a single glycosylated serine residue were generated by replacing five of the six serine residues with alanine residues. MALDI-TOF mass analysis of flagellin proteins revealed that the major component of each glycan was a trisaccharide basically similar to that at position 201, but with heterogeneity in glycoform distribution. Swarming motility and amounts of acylhomoserine lactones (AHLs) as quorum-sensing signal molecules were significantly reduced, especially in the S143-5S/A, S164-5S/A and S201-5S/A mutants, whereas tolerance to antibiotics was increased in these three mutants. All the mutants showed lower ability to cause disease on host tobacco plants. These results supported our previous finding that glycosylation of the most externally located sites on the surface of the flagellin molecule, such as S176 and S183, is required for virulence in yringae pv. 6605. Furthermore, it is speculated that flagellum-dependent motility might be correlated with quorum sensing and antibiotic resistance.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.030700-0
2010-01-01
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/1/72.html?itemId=/content/journal/micro/10.1099/mic.0.030700-0&mimeType=html&fmt=ahah

References

  1. Aendekerk, S., Diggle, S. P., Song, Z., Høiby, N., Cornelis, P., Williams, P. & Cámara, M. ( 2005; ). The MexGHI-OpmD multidrug efflux pump controls growth, antibiotic susceptibility and virulence in Pseudomonas aeruginosa via 4-quinolone-dependent cell-to-cell communication. Microbiology 151, 1113–1125.[CrossRef]
    [Google Scholar]
  2. Brint, J. M. & Ohman, D. E. ( 1995; ). Synthesis of multiple exoproducts in Pseudomonas aeruginosa is under the control of RhlR-RhlI, another set of regulators in strain PAO1 with homology to the autoinducer-responsive LuxR-LuxI family. J Bacteriol 177, 7155–7163.
    [Google Scholar]
  3. Daniels, R., Vanderleyden, J. & Michiels, J. ( 2004; ). Quorum sensing and swarming migration in bacteria. FEMS Microbiol Rev 28, 261–289.[CrossRef]
    [Google Scholar]
  4. Higashi, K., Ishiga, Y., Inagaki, Y., Toyoda, K., Shiraishi, T. & Ichinose, Y. ( 2008; ). Modulation of defense signal transduction by flagellin-induced WRKY41 transcription factor in Arabidopsis thaliana. Mol Genet Genomics 279, 303–312.[CrossRef]
    [Google Scholar]
  5. Hodge, J. E. & Hofreiter, B. T. ( 1962; ). Determination of reducing sugars and carbohydrates. In Methods in Carbohydrate Chemistry, vol. 1, pp. 380–394. Edited by R. L. Whistler & M. L. Wolfrom. New York: Academic Press.
  6. Ichinose, Y., Shimizu, R., Ikeda, Y., Taguchi, F., Marutani, M., Mukaihara, T., Inagaki, Y., Toyoda, K. & Shiraishi, T. ( 2003; ). Need for flagella for complete virulence of Pseudomonas syringae pv. tabaci: genetic analysis with flagella-defective mutants ΔfliC and ΔfliD in host tobacco plants. J Gen Plant Pathol 69, 244–249.[CrossRef]
    [Google Scholar]
  7. Kaplan, H. B. & Greenberg, E. P. ( 1985; ). Diffusion of autoinducer is involved in regulation of the Vibrio fischeri luminescence system. J Bacteriol 163, 1210–1214.
    [Google Scholar]
  8. Keith, L. M. & Bender, C. L. ( 1999; ). AlgT (σ 22) controls alginate production and tolerance to environmental stress in Pseudomonas syringae. J Bacteriol 181, 7176–7184.
    [Google Scholar]
  9. Kinscherf, T. G. & Willis, D. K. ( 1999; ). Swarming by Pseudomonas syringae B728a requires gacS (lemA) and gacA but not the acyl-homoserine lactone biosynthetic gene ahlI. J Bacteriol 181, 4133–4136.
    [Google Scholar]
  10. Lauriano, C. M., Ghosh, C., Correa, N. E. & Klose, K. E. ( 2004; ). The sodium-driven flagellar motor controls exopolysaccharide expression in Vibrio cholerae. J Bacteriol 186, 4864–4874.[CrossRef]
    [Google Scholar]
  11. McClean, K. H., Winson, M. K., Fish, L., Taylor, A., Chhabra, S. R., Camara, M., Daykin, M., Lamb, J. H., Swift, S. B. & other authors ( 1997; ). Quorum sensing and Chromobacterium violaceum: exploitation of violacein production and inhibition for the detection of N-acylhomoserine lactones. Microbiology 143, 3703–3711.[CrossRef]
    [Google Scholar]
  12. Nelson, K. E., Weinel, C., Paulsen, I. T., Dodson, R. J., Hilbert, H., Martins dos Santos, V. A., Fouts, D. E., Gill, S. R., Pop, M. & other authors ( 2002; ). Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environ Microbiol 4, 799–808.[CrossRef]
    [Google Scholar]
  13. Nikaido, H. ( 2009; ). Multidrug resistance in bacteria. Annu Rev Biochem 78, 119–146.[CrossRef]
    [Google Scholar]
  14. Quinones, B., Dulla, G. & Lindow, S. E. ( 2005; ). Quorum sensing regulates exopolysaccharide production, motility, and virulence in Pseudomonas syringae. Mol Plant Microbe Interact 18, 682–693.[CrossRef]
    [Google Scholar]
  15. Schäfer, A., Tauch, A., Jäger, W., Kalinowski, J., Thierbach, G. & Pühler, A. ( 1994; ). Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene 145, 69–73.[CrossRef]
    [Google Scholar]
  16. Shaw, P. D., Ping, G., Daly, S. L., Cha, C., Cronan, J. E., Jr, Rinehart, K. L. & Farrand, S. K. ( 1997; ). Detecting and characterizing N-acyl-homoserine lactone signal molecule by thin-layer chromatography. Proc Natl Acad Sci U S A 94, 6036–6041.[CrossRef]
    [Google Scholar]
  17. Shimizu, R., Taguchi, F., Marutani, M., Mukaihara, T., Inagaki, Y., Toyoda, K., Shiraishi, T. & Ichinose, Y. ( 2003; ). The ΔfliD mutant of Pseudomonas syringae pv. tabaci, which secretes flagellin monomers, induces a strong hypersensitive reaction (HR) in non-host tomato cells. Mol Genet Genomics 269, 21–30.
    [Google Scholar]
  18. Taguchi, F., Shimizu, R., Inagaki, Y., Toyoda, K., Shiraishi, T. & Ichinose, Y. ( 2003a; ). Post-translational modification of flagellin determines the specificity of HR induction. Plant Cell Physiol 44, 342–349.[CrossRef]
    [Google Scholar]
  19. Taguchi, F., Shimizu, R., Nakajima, R., Toyoda, K., Shiraishi, T. & Ichinose, Y. ( 2003b; ). Differential effects of flagellins from Pseudomonas syringae pv. tabaci, tomato and glycinea on plant defense response. Plant Physiol Biochem 41, 165–174.[CrossRef]
    [Google Scholar]
  20. Taguchi, F., Takeuchi, K., Katoh, E., Murata, K., Suzuki, T., Marutani, M., Kawasaki, T., Eguchi, M., Katoh, S. & other authors ( 2006a; ). Identification of glycosylation genes and glycosylated amino acids of flagellin in Pseudomonas syringae pv. tabaci. Cell Microbiol 8, 923–938.[CrossRef]
    [Google Scholar]
  21. Taguchi, F., Ogawa, Y., Takeuchi, K., Suzuki, T., Toyoda, K., Shiraishi, T. & Ichinose, Y. ( 2006b; ). A homologue of the 3-oxoacyl-(acyl carrier protein) synthase III gene located in the glycosylation island of Pseudomonas syringae pv. tabaci regulates virulence factors via N-acyl homoserine lactone and fatty acid synthesis. J Bacteriol 188, 8376–8384.[CrossRef]
    [Google Scholar]
  22. Taguchi, F., Shibata, S., Suzuki, T., Ogawa, Y., Aizawa, S., Takeuchi, K. & Ichinose, Y. ( 2008; ). Effects of glycosylation on swimming ability and flagellar polymorphic transformation in Pseudomonas syringae pv. tabaci 6605. J Bacteriol 190, 764–768.[CrossRef]
    [Google Scholar]
  23. Takeuchi, K., Taguchi, F., Inagaki, Y., Toyoda, K., Shiraishi, T. & Ichinose, Y. ( 2003; ). Flagellin glycosylation island in Pseudomonas syringae pv. glycinea and its role in host specificity. J Bacteriol 185, 6658–6665.[CrossRef]
    [Google Scholar]
  24. Takeuchi, K., Ono, H., Yoshida, M., Ishii, T., Katoh, E., Taguchi, F., Miki, R., Murata, K., Kaku, H. & Ichinose, Y. ( 2007; ). Flagellin glycans from two pathovars of Pseudomonas syringae contain rhamnose in d and l configurations in different ratios and modified 4-amino-4,6-dideoxyglucose. J Bacteriol 189, 6945–6956.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.030700-0
Loading
/content/journal/micro/10.1099/mic.0.030700-0
Loading

Data & Media loading...

Supplements

vol. , part 1, pp. 72 - 80

Drop-collapsing test of bacterial suspension [ PDF] (441 kb)



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error