1887

Abstract

When grown at pH 4.5, acquires a resistance to inhibitory acetic acid levels (∼0.1 M) by destabilizing Fps1p, the plasma membrane aquaglyceroporin that provides the main route for passive diffusional entry of this acid into the cell. Acetic acid stress transiently activates Hog1p mitogen-activated protein (MAP) kinase, which, in turn, phosphorylates Fps1p in order to target this channel for endocytosis and degradation in the vacuole. This activation of Hog1p is abolished with the loss of Fps1p, but is more sustained when cells express an open Fps1p channel refractory to destabilization. At neutral pH, much higher levels of acetate (∼0.5 M) are needed to inhibit growth. Under such conditions, the loss of Fps1p does not abolish, but merely slows, the activation of Hog1p. Acetate stress also activates the Slt2(Mpk1)p cell integrity MAP kinase, possibly by causing inhibition of glucan synthase activity. In pH 4.5 cultures, this acetate activation of Slt2p is strongly enhanced by the loss of Fps1p and is dependent upon the cell surface sensor Wsc1p. Lack of Fps1p therefore exerts opposing effects on the activation of Hog1p and Slt2p in yeast exposed to acetic acid stress.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.030502-0
2009-10-01
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/10/3304.html?itemId=/content/journal/micro/10.1099/mic.0.030502-0&mimeType=html&fmt=ahah

References

  1. Adams, A., Gottschling, D. E., Kaiser, C. A. & Stearns, T. ( 1997; ). Methods in Yeast Genetics. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  2. Casal, M., Cardoso, H. & Leao, C. ( 1996; ). Mechanisms regulating the transport of acetic acid in Saccharomyces cerevisiae. Microbiology 142, 1385–1390.[CrossRef]
    [Google Scholar]
  3. Davenport, K. R., Sohaskey, M., Kamada, Y., Levin, D. E. & Gustin, M. C. ( 1995; ). A second osmosensing signal transduction pathway in yeast. Hypotonic shock activates the PKC1 protein kinase-regulated cell integrity pathway. J Biol Chem 270, 30157–30161.[CrossRef]
    [Google Scholar]
  4. Davenport, K. D., Williams, K. E., Ullmann, B. D. & Gustin, M. C. ( 1999; ). Activation of the Saccharomyces cerevisiae filamentation/invasion pathway by osmotic stress in high-osmolarity glycogen pathway mutants. Genetics 153, 1091–1103.
    [Google Scholar]
  5. Delley, P. A. & Hall, M. N. ( 1999; ). Cell wall stress depolarizes cell growth via hyperactivation of RHO1. J Cell Biol 147, 163–174.[CrossRef]
    [Google Scholar]
  6. Fernandes, A. R., Mira, N. P., Vargas, R. C., Canelhas, I. & Sa-Correia, I. ( 2005; ). Saccharomyces cerevisiae adaptation to weak acids involves the transcription factor Haa1p and Haa1p-regulated genes. Biochem Biophys Res Commun 337, 95–103.[CrossRef]
    [Google Scholar]
  7. Garcia-Rodriguez, L. J., Valle, R., Duran, A. & Roncero, C. ( 2005; ). Cell integrity signaling activation in response to hyperosmotic shock in yeast. FEBS Lett 579, 6186–6190.[CrossRef]
    [Google Scholar]
  8. Giannattasio, S., Guaragnella, N., Corte-Real, M., Passarella, S. & Marra, E. ( 2005; ). Acid stress adaptation protects Saccharomyces cerevisiae from acetic acid-induced programmed cell death. Gene 354, 93–98.[CrossRef]
    [Google Scholar]
  9. Gray, J. V., Ogas, J. P., Kamada, Y., Stone, M., Levin, D. E. & Herskowitz, I. ( 1997; ). A role for the Pkc1 MAP kinase pathway of Saccharomyces cerevisiae in bud emergence and identification of a putative upstream regulator. EMBO J 16, 4924–4937.[CrossRef]
    [Google Scholar]
  10. Hahn, J. S. & Thiele, D. J. ( 2002; ). Regulation of the Saccharomyces cerevisiae Slt2 kinase pathway by the stress-inducible Sdp1 dual specificity phosphatase. J Biol Chem 277, 21278–21284.[CrossRef]
    [Google Scholar]
  11. Hedfalk, K., Bill, R. M., Mullins, J. G., Karlgren, S., Filipsson, C., Bergstrom, J., Tamas, M. J., Rydstrom, J. & Hohmann, S. ( 2004; ). A regulatory domain in the C-terminal extension of the yeast glycerol channel Fps1p. J Biol Chem 279, 14954–14960.[CrossRef]
    [Google Scholar]
  12. Hohmann, S., Krantz, M. & Nordlander, B. ( 2007; ). Yeast osmoregulation. Methods Enzymol 428, 29–45.
    [Google Scholar]
  13. Levin, D. E. ( 2005; ). Cell wall integrity signaling in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 69, 262–291.[CrossRef]
    [Google Scholar]
  14. Ludovico, P., Sousa, M. J., Silva, M. T., Leao, C. & Corte-Real, M. ( 2001; ). Saccharomyces cerevisiae commits to a programmed cell death process in response to acetic acid. Microbiology 147, 2409–2415.
    [Google Scholar]
  15. Luyten, K., Albertyn, J., Skibbe, W. F., Prior, B. A., Ramos, J., Thevelein, J. M. & Hohmann, S. ( 1995; ). Fps1, a yeast member of the MIP family of channel proteins, is a facilitator for glycerol uptake and efflux and is inactive under osmotic stress. EMBO J 14, 1360–1371.
    [Google Scholar]
  16. Maeda, T., Wurgler-Murphy, S. M. & Saito, H. ( 1994; ). A two-component system that regulates an osmosensing MAP kinase cascade in yeast. Nature 369, 242–245.[CrossRef]
    [Google Scholar]
  17. Mager, W. H. & Siderius, M. ( 2002; ). Novel insights into the osmotic stress response of yeast. FEMS Yeast Res 2, 251–257.[CrossRef]
    [Google Scholar]
  18. Martin, H., Rodriguez-Pachon, J. M., Ruiz, C., Nombela, C. & Molina, M. ( 2000; ). Regulatory mechanisms for modulation of signaling through the cell integrity Slt2-mediated pathway in Saccharomyces cerevisiae. J Biol Chem 275, 1511–1519.[CrossRef]
    [Google Scholar]
  19. Mollapour, M. & Piper, P. W. ( 2006; ). Hog1p MAP kinase determines acetic acid resistance in Saccharomyces cerevisiae. FEMS Yeast Res 6, 1274–1280.[CrossRef]
    [Google Scholar]
  20. Mollapour, M. & Piper, P. W. ( 2007; ). Hog1 mitogen-activated protein kinase phosphorylation targets the yeast Fps1 aquaglyceroporin for endocytosis, thereby rendering cells resistant to acetic acid. Mol Cell Biol 27, 6446–6456.[CrossRef]
    [Google Scholar]
  21. O'Rourke, S. M. & Herskowitz, I. ( 2004; ). Unique and redundant roles for HOG MAPK pathway components as revealed by whole-genome expression analysis. Mol Biol Cell 15, 532–542.
    [Google Scholar]
  22. Paiva, S., Devaux, F., Barbosa, S., Jacq, C. & Casal, M. ( 2004; ). Ady2p is essential for the acetate permease activity in the yeast Saccharomyces cerevisiae. Yeast 21, 201–210.[CrossRef]
    [Google Scholar]
  23. Pettersson, N., Filipsson, C., Becit, E., Brive, L. & Hohmann, S. ( 2005; ). Aquaporins in yeasts and filamentous fungi. Biol Cell 97, 487–500.[CrossRef]
    [Google Scholar]
  24. Philip, B. & Levin, D. E. ( 2001; ). Wsc1 and Mid2 are cell surface sensors for cell wall integrity signaling that act through Rom2, a guanine nucleotide exchange factor for Rho1. Mol Cell Biol 21, 271–280.[CrossRef]
    [Google Scholar]
  25. Philips, J. & Herskowitz, I. ( 1997; ). Osmotic balance regulates cell fusion during mating in Saccharomyces cerevisiae. J Cell Biol 138, 961–974.[CrossRef]
    [Google Scholar]
  26. Proft, M. & Struhl, K. ( 2004; ). MAP kinase-mediated stress relief that precedes and regulates the timing of transcriptional induction. Cell 118, 351–361.[CrossRef]
    [Google Scholar]
  27. Reinoso-Martin, C., Schuller, C., Schuetzer-Muehlbauer, M. & Kuchler, K. ( 2003; ). The yeast protein kinase C cell integrity pathway mediates tolerance to the antifungal drug caspofungin through activation of Slt2p mitogen-activated protein kinase signaling. Eukaryot Cell 2, 1200–1210.[CrossRef]
    [Google Scholar]
  28. Serrano, R., Martin, H., Casamayor, A. & Arino, J. ( 2006; ). Signaling alkaline pH stress in the yeast Saccharomyces cerevisiae through the Wsc1 cell surface sensor and the Slt2 MAPK pathway. J Biol Chem 281, 39785–39795.[CrossRef]
    [Google Scholar]
  29. Siderius, M., Rots, E. & Mager, W. H. ( 1997; ). High-osmolarity signalling in Saccharomyces cerevisiae is modulated in a carbon-source-dependent fashion. Microbiology 143, 3241–3250.[CrossRef]
    [Google Scholar]
  30. Tamas, M. J., Luyten, K., Sutherland, F. C., Hernandez, A., Albertyn, J., Valadi, H., Li, H., Prior, B. A., Kilian, S. G. & other authors ( 1999; ). Fps1p controls the accumulation and release of the compatible solute glycerol in yeast osmoregulation. Mol Microbiol 31, 1087–1104.[CrossRef]
    [Google Scholar]
  31. Tamas, M. J., Rep, M., Thevelein, J. M. & Hohmann, S. ( 2000; ). Stimulation of the yeast high osmolarity glycerol (HOG) pathway: evidence for a signal generated by a change in turgor rather than by water stress. FEBS Lett 472, 159–165.[CrossRef]
    [Google Scholar]
  32. Tamas, M. J., Karlgren, S., Bill, R. M., Hedfalk, K., Allegri, L., Ferreira, M., Thevelein, J. M., Rydström, J., Mullins, J. G. & Hohmann, S. ( 2003; ). A short regulatory domain restricts glycerol transport through yeast Fps1p. J Biol Chem 278, 6337–6345.[CrossRef]
    [Google Scholar]
  33. Tao, W., Deschenes, R. J. & Fassler, J. S. ( 1999; ). Intracellular glycerol levels modulate the activity of Sln1p, a Saccharomyces cerevisiae two-component regulator. J Biol Chem 274, 360–367.[CrossRef]
    [Google Scholar]
  34. Thorsen, M., Di, Y., Tangemo, C., Morillas, M., Ahmadpour, D., Van der Does, C., Wagner, A., Johansson, E., Boman, J. & other authors ( 2006; ). The MAPK Hog1p modulates Fps1p-dependent arsenite uptake and tolerance in yeast. Mol Biol Cell 17, 4400–4410.[CrossRef]
    [Google Scholar]
  35. Tong, A. H. & Boone, C. ( 2006; ). Synthetic genetic array analysis in Saccharomyces cerevisiae. Methods Mol Biol 313, 171–192.
    [Google Scholar]
  36. Verna, J., Lodder, A., Lee, K., Vagts, A. & Ballester, R. ( 1997; ). A family of genes required for maintenance of cell wall integrity and for the stress response in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 94, 13804–13809.[CrossRef]
    [Google Scholar]
  37. Winkler, A., Arkind, C., Mattison, C. P., Burkholder, A., Knoche, K. & Ota, I. ( 2002; ). Heat stress activates the yeast high-osmolarity glycerol mitogen-activated protein kinase pathway, and protein tyrosine phosphatases are essential under heat stress. Eukaryot Cell 1, 163–173.[CrossRef]
    [Google Scholar]
  38. Zhao, C., Jung, U. S., Garrett-Engele, P., Roe, T., Cyert, M. S. & Levin, D. E. ( 1998; ). Temperature-induced expression of yeast FKS2 is under the dual control of protein kinase C and calcineurin. Mol Cell Biol 18, 1013–1022.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.030502-0
Loading
/content/journal/micro/10.1099/mic.0.030502-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error