1887

Abstract

is a Gram-negative obligate intracellular bacterium that is the causative agent of common sexually transmitted diseases and the leading cause of preventable blindness worldwide. It has been observed that YtgA (CT067) is very immunogenic in patients with chlamydial genital infections. Homology analyses suggested that YtgA is a soluble periplasmic protein and a component of an ATP-binding cassette (ABC) transport system for metals such as iron. Since little is known about iron transport in , biochemical assays were used to determine the potential role of YtgA in iron acquisition. Fe binding and competition studies revealed that YtgA preferentially binds iron over nickel, zinc or manganese. Western blot and densitometry techniques showed that YtgA concentrations specifically increased 3–5-fold in , when cultured under iron-starvation conditions rather than under general stress conditions, such as exposure to penicillin. Finally, immuno-transmission electron microscopy provided evidence that YtgA is more concentrated in during iron restriction, supporting a possible role for YtgA as a component of an ABC transporter.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.030247-0
2009-09-01
2019-10-17
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/9/2884.html?itemId=/content/journal/micro/10.1099/mic.0.030247-0&mimeType=html&fmt=ahah

References

  1. Abdelrahman, Y. M. & Belland, R. J. ( 2005; ). The chlamydial developmental cycle. FEMS Microbiol Rev 29, 949–959.[CrossRef]
    [Google Scholar]
  2. Adderley-Kelly, B. & Stephens, E. M. ( 2005; ). Chlamydia: a major health threat to adolescents and young adults. ABNF J 16, 52–55.
    [Google Scholar]
  3. Andrews, S. C., Robinson, A. K. & Rodriguez-Quinones, F. ( 2003; ). Bacterial iron homeostasis. FEMS Microbiol Rev 27, 215–237.[CrossRef]
    [Google Scholar]
  4. Bannantine, J. P. & Rockey, D. D. ( 1999; ). Use of primate model system to identify Chlamydia trachomatis protein antigens recognized uniquely in the context of infection. Microbiology 145, 2077–2085.[CrossRef]
    [Google Scholar]
  5. Bearden, S. W. & Perry, R. D. ( 1999; ). The Yfe system of Yersinia pestis transports iron and manganese and is required for full virulence of plague. Mol Microbiol 32, 403–414.[CrossRef]
    [Google Scholar]
  6. Beatty, W. L., Morrison, R. P. & Byrne, G. I. ( 1994; ). Persistent chlamydiae: from cell culture to a paradigm for chlamydial pathogenesis. Microbiol Rev 58, 686–699.
    [Google Scholar]
  7. Belland, R. J., Zhong, G., Crane, D. D., Hogan, D., Sturdevant, D., Sharma, J., Beatty, W. L. & Caldwell, H. D. ( 2003; ). Genomic transcriptional profiling of the developmental cycle of Chlamydia trachomatis. Proc Natl Acad Sci U S A 100, 8478–8483.[CrossRef]
    [Google Scholar]
  8. Braun, V. & Braun, M. ( 2002; ). Iron transport and signaling in Escherichia coli. FEBS Lett 529, 78–85.[CrossRef]
    [Google Scholar]
  9. Chen, C. Y., Berish, S. A., Morse, S. A. & Mietzner, T. A. ( 1993; ). The ferric iron-binding protein of pathogenic Neisseria spp. functions as a periplasmic transport protein in iron acquisition from human transferrin. Mol Microbiol 10, 311–318.[CrossRef]
    [Google Scholar]
  10. Clarke, T. E., Tari, L. W. & Vogel, H. J. ( 2001; ). Structural biology of bacterial iron uptake systems. Curr Top Med Chem 1, 7–30.[CrossRef]
    [Google Scholar]
  11. Dautry-Varsat, A., Subtil, A. & Hackstadt, T. ( 2005; ). Recent insights into the mechanisms of Chlamydia entry. Cell Microbiol 7, 1714–1722.
    [Google Scholar]
  12. Dill, B. D., Dessus-Babus, S. & Raulston, J. E. ( 2009; ). Identification of iron-responsive proteins expressed by Chlamydia trachomatis reticulate bodies during intracellular growth. Microbiology 155, 210–219.[CrossRef]
    [Google Scholar]
  13. Giles, D. K., Whittimore, J. D., LaRue, R. W., Raulston, J. E. & Wyrick, P. B. ( 2006; ). Ultrastructural analysis of chlamydial antigen-containing vesicles everting from the Chlamydia trachomatis inclusion. Microbes Infect 8, 1579–1591.[CrossRef]
    [Google Scholar]
  14. Gong, S., Bearden, S. W., Geoffroy, V. A., Fetherston, J. D. & Perry, R. D. ( 2001; ). Characterization of the Yersinia pestis Yfu ABC inorganic iron transport system. Infect Immun 69, 2829–2837.[CrossRef]
    [Google Scholar]
  15. Gray-Swain, M. R. & Peipert, J. F. ( 2006; ). Pelvic inflammatory disease in adolescents. Curr Opin Obstet Gynecol 18, 503–510.[CrossRef]
    [Google Scholar]
  16. Guseva, N. V., Dessus-Babus, S., Moore, C. G., Whittimore, J. D. & Wyrick, P. B. ( 2007; ). Differences in Chlamydia trachomatis serovar E growth rate in polarized endometrial and endocervical epithelial cells grown in three-dimensional culture. Infect Immun 75, 553–564.[CrossRef]
    [Google Scholar]
  17. Hackstadt, T. ( 1999; ). Cell biology. In Chlamydia: Intracellular Biology, Pathogenesis, and Immunity, pp. 101–138. Edited by R. S. Stephens. Washington, DC: American Society for Microbiology.
  18. Hackstadt, T., Scidmore, M. A. & Rockey, D. D. ( 1995; ). Lipid metabolism in Chlamydia trachomatis-infected cells: directed trafficking of Golgi-derived sphingolipids to the chlamydial inclusion. Proc Natl Acad Sci U S A 92, 4877–4881.[CrossRef]
    [Google Scholar]
  19. Hanks, T. S., Liu, M., McClure, M. J. & Lei, B. ( 2005; ). ABC transporter FtsABCD of Streptococcus pyogenes mediates uptake of ferric ferrichrome. BMC Microbiol 5, 62 [CrossRef]
    [Google Scholar]
  20. Hardham, J. M., Stamm, L. V., Porcella, S. F., Frye, J. G., Barnes, N. Y., Howell, J. K., Mueller, S. L., Radolf, J. D., Weinstock, G. M. & Norris, S. J. ( 1997; ). Identification and transcriptional analysis of a Treponema pallidum operon encoding a putative ABC transport system, an iron-activated repressor protein homolog, and a glycolytic pathway enzyme homolog. Gene 197, 47–64.[CrossRef]
    [Google Scholar]
  21. Hatch, T. P., Al-Hossainy, E. & Silverman, J. A. ( 1982; ). Adenine nucleotide and lysine transport in Chlamydia psittaci. J Bacteriol 150, 662–670.
    [Google Scholar]
  22. Higgins, C. F. & Linton, K. J. ( 2004; ). The ATP switch model for ABC transporters. Nat Struct Mol Biol 11, 918–926.[CrossRef]
    [Google Scholar]
  23. Hogan, R. J., Mathews, S. A., Mukhopadhyay, S., Summersgill, J. T. & Timms, P. ( 2004; ). Chlamydial persistence: beyond the biphasic paradigm. Infect Immun 72, 1843–1855.[CrossRef]
    [Google Scholar]
  24. Hogbom, M., Ericsson, U. B., Lam, R., Bakali, H. M., Kuznetsova, E., Nordlund, P. & Zamble, D. B. ( 2005; ). A high throughput method for the detection of metalloproteins on a microgram scale. Mol Cell Proteomics 4, 827–834.[CrossRef]
    [Google Scholar]
  25. Jones, P. M. & George, A. M. ( 2002; ). Mechanism of ABC transporters: a molecular dynamics simulation of a well characterized nucleotide-binding subunit. Proc Natl Acad Sci U S A 99, 12639–12644.[CrossRef]
    [Google Scholar]
  26. Novak, R., Braun, J. S., Charpentier, E. & Tuomanen, E. ( 1998; ). Penicillin tolerance genes of Streptococcus pneumoniae: the ABC-type manganese permease complex Psa. Mol Microbiol 29, 1285–1296.[CrossRef]
    [Google Scholar]
  27. Postle, K. & Kadner, R. J. ( 2003; ). Touch and go: tying TonB to transport. Mol Microbiol 49, 869–882.[CrossRef]
    [Google Scholar]
  28. Raulston, J. E. ( 1997; ). Response of Chlamydia trachomatis serovar E to iron restriction in vitro and evidence for iron-regulated chlamydial proteins. Infect Immun 65, 4539–4547.
    [Google Scholar]
  29. Raulston, J. E. ( 2006; ). Iron and micronutrients. In Chlamydia: Genomics and Pathogenesis, pp. 171–194. Edited by P. M. Bavoil & P. B. Wyrick. Wymondham, UK: Horizon Bioscience.
  30. Raulston, J. E., Miller, J. D., Davis, C. H., Schell, M., Baldwin, A., Ferguson, K. & Lane, H. ( 2007; ). Identification of an iron-responsive protein that is antigenic in patients with Chlamydia trachomatis genital infections. FEMS Immunol Med Microbiol 51, 569–576.[CrossRef]
    [Google Scholar]
  31. Roskams, J. & Rodgers, L. ( 2002; ). Lab Ref. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  32. Scidmore, M. ( 2006; ). Chlamydial exploitation of host signaling, cytoskeletal, and membrane trafficking pathways. In Chlamydia: Genomics and Pathogenesis, pp. 255–296. Edited by P. M. Bavoil & P. B. Wyrick. Wymondham, UK: Horizon Bioscience.
  33. Scidmore, M. A., Fischer, E. R. & Hackstadt, T. ( 1996; ). Sphingolipids and glycoproteins are differentially trafficked to the Chlamydia trachomatis inclusion. J Cell Biol 134, 363–374.[CrossRef]
    [Google Scholar]
  34. Shouldice, S. R., McRee, D. E., Dougan, D. R., Tari, L. W. & Schryvers, A. B. ( 2005; ). Novel anion-independent iron coordination by members of a third class of bacterial periplasmic ferric ion-binding proteins. J Biol Chem 280, 5820–5827.[CrossRef]
    [Google Scholar]
  35. Stephens, R. S., Kalman, S., Lammel, C., Fan, J., Marathe, R., Aravind, L., Mitchell, W., Olinger, L., Tatusov, R L. & other authors ( 1998; ). Genome sequence of an obligate intracellular pathogen of humans: Chlamydia trachomatis. Science 282, 754–759.[CrossRef]
    [Google Scholar]
  36. Suyama, S., Abe, S., Inoue, Y., Toukairin, A., Ohtake, Y. & Ohkubo, Y. ( 2006; ). The involvement of transferrin in the uptake of iron-59 by hepatocytes of carbon tetrachloride-damaged rats. Biol Pharm Bull 29, 1387–1390.[CrossRef]
    [Google Scholar]
  37. Tam, J. E., Knight, S. T., Davis, C. H. & Wyrick, P. B. ( 1992; ). Eukaryotic cells grown on microcarrier beads offer a cost-efficient way to propagate Chlamydia trachomatis. Biotechniques 13, 374–378.
    [Google Scholar]
  38. Thylefors, B., Negrel, A. D., Pararajasegaram, R. & Dadzie, K. Y. ( 1995; ). Global data on blindness. Bull World Health Organ 73, 115–121.
    [Google Scholar]
  39. Tipples, G. & McClarty, G. ( 1993; ). The obligate intracellular bacterium Chlamydia trachomatis is auxotrophic for three of the four ribonucleoside triphosphates. Mol Microbiol 8, 1105–1114.[CrossRef]
    [Google Scholar]
  40. Tjaden, J., Winkler, H. H., Schwoppe, C., Van Der Laan, M., Mohlmann, T. & Neuhaus, H. E. ( 1999; ). Two nucleotide transport proteins in Chlamydia trachomatis, one for net nucleoside triphosphate uptake and the other for transport of energy. J Bacteriol 181, 1196–1202.
    [Google Scholar]
  41. Visca, P., Leoni, L., Wilson, M. J. & Lamont, I. L. ( 2002; ). Iron transport and regulation, cell signalling and genomics: lessons from Escherichia coli and Pseudomonas. Mol Microbiol 45, 1177–1190.[CrossRef]
    [Google Scholar]
  42. Wehrl, W., Meyer, T. F., Jungblut, P. R., Muller, E. C. & Szczepek, A. J. ( 2004; ). Action and reaction: Chlamydophila pneumoniae proteome alteration in a persistent infection induced by iron deficiency. Proteomics 4, 2969–2981.[CrossRef]
    [Google Scholar]
  43. West, S. K. ( 2004; ). Trachoma: new assault on an ancient disease. Prog Retin Eye Res 23, 381–401.[CrossRef]
    [Google Scholar]
  44. Wyrick, P., Choong, J., Knight, S. T., Goyeau, D., Stuart, E. S. & MacDonald, A. B. ( 1994; ). Chlamydia trachomatis antigens on the surface of infected human endometrial epithelial cells. Immunol Infect Dis 4, 131–141.
    [Google Scholar]
  45. Wyrick, P. B., Gerbig, D. G., Jr, Knight, S. T. & Raulston, J. E. ( 1996; ). Accelerated development of genital Chlamydia trachomatis serovar E in McCoy cells grown on microcarrier beads. Microb Pathog 20, 31–40.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.030247-0
Loading
/content/journal/micro/10.1099/mic.0.030247-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error