1887

Abstract

is a highly infectious pathogen that infects animals and humans to cause the disease tularemia. The primary targets of this bacterium are macrophages, in which it replicates in the cytoplasm after escaping the initial phagosomal compartment. The ability to replicate within macrophages relies on the tightly regulated expression of a series of genes. One of the most commonly used means of coordinating the regulation of multiple genes in bacteria consists of the association of dedicated alternative sigma factors with the core of the RNA polymerase (RNAP). analysis of the LVS genome led us to identify, in addition to the genes encoding the RNAP core (comprising the 1, 2, , ′ and subunits), one gene (designated ) encoding the major sigma factor , and a unique gene () encoding a putative alternative sigma factor homologue of the heat-shock family (designated ). Hence, represents one of the minority of bacterial species that possess only one or no alternative sigma factor in addition to the main factor . In the present work, we show that encodes a genuine factor. Transcriptomic analyses of the LVS heat-stress response allowed the identification of a series of orthologues of known heat-shock genes (including those for Hsp40, GroEL, GroES, DnaK, DnaJ, GrpE, ClpB and ClpP) and a number of genes implicated in virulence. A bioinformatic analysis was used to identify genes preceded by a putative -binding site, revealing both similarities to and differences from RpoH-mediated gene expression in . Our results suggest that RpoH is an essential protein of , and positively regulates a subset of genes involved in the heat-shock response.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.029058-0
2009-08-01
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/8/2560.html?itemId=/content/journal/micro/10.1099/mic.0.029058-0&mimeType=html&fmt=ahah

References

  1. Arsène, F., Tomoyasu, T. & Bukau, B. ( 2000; ). The heat shock response of Escherichia coli. Int J Food Microbiol 55, 3–9.[CrossRef]
    [Google Scholar]
  2. Brotcke, A., Weiss, D. S., Kim, C. C., Chain, P., Malfatti, S., Garcia, E. & Monack, D. M. ( 2006; ). Identification of MglA-regulated genes reveals novel virulence factors in Francisella tularensis. Infect Immun 74, 6642–6655.[CrossRef]
    [Google Scholar]
  3. Charity, J. C., Costante-Hamm, M. M., Balon, E. L., Boyd, D. H., Rubin, E. J. & Dove, S. L. ( 2007; ). Twin RNA polymerase-associated proteins control virulence gene expression in Francisella tularensis. PLoS Pathog 3, e84 [CrossRef]
    [Google Scholar]
  4. de Bruin, O. M., Ludu, J. S. & Nano, F. E. ( 2007; ). The Francisella pathogenicity island protein IglA localizes to the bacterial cytoplasm and is needed for intracellular growth. BMC Microbiol 7, 1 [CrossRef]
    [Google Scholar]
  5. Ericsson, M., Tarnvik, A., Kuoppa, K., Sandstrom, G. & Sjostedt, A. ( 1994; ). Increased synthesis of DnaK, GroEL, and GroES homologs by Francisella tularensis LVS in response to heat and hydrogen peroxide. Infect Immun 62, 178–183.
    [Google Scholar]
  6. Golovliov, I., Sjostedt, A., Mokrievich, A. & Pavlov, V. ( 2003; ). A method for allelic replacement in Francisella tularensis. FEMS Microbiol Lett 222, 273–280.[CrossRef]
    [Google Scholar]
  7. Gourse, R. L., Ross, W. & Rutherford, S. T. ( 2006; ). General pathway for turning on promoters transcribed by RNA polymerases containing alternative σ factors. J Bacteriol 188, 4589–4591.[CrossRef]
    [Google Scholar]
  8. Gray, C. G., Cowley, S. C., Cheung, K. K. & Nano, F. E. ( 2002; ). The identification of five genetic loci of Francisella novicida associated with intracellular growth. FEMS Microbiol Lett 215, 53–56.[CrossRef]
    [Google Scholar]
  9. Gruber, T. M. & Gross, C. A. ( 2003; ). Multiple sigma subunits and the partitioning of bacterial transcription space. Annu Rev Microbiol 57, 441–466.[CrossRef]
    [Google Scholar]
  10. Guisbert, E., Yura, T., Rhodius, V. A. & Gross, C. A. ( 2008; ). Convergence of molecular, modeling, and systems approaches for an understanding of the Escherichia coli heat shock response. Microbiol Mol Biol Rev 72, 545–554.[CrossRef]
    [Google Scholar]
  11. Gunesekere, I. C., Kahler, C. M., Powell, D. R., Snyder, L. A. S., Saunders, N. J., Rood, J. I. & Davies, J. K. ( 2006; ). Comparison of the RpoH-dependent regulon and the general stress response in Neisseria gonorrhoeae. J Bacteriol 188, 4769–4776.[CrossRef]
    [Google Scholar]
  12. Horzempa, J., Carlson, P. E., Jr, O'Dee, D. M., Shanks, R. M. & Nau, G. J. ( 2008; ). Global transcriptional response to mammalian temperature provides new insight into Francisella tularensis pathogenesis. BMC Microbiol 8, 172 [CrossRef]
    [Google Scholar]
  13. Kill, K., Binnewies, T. T., Sicheritz-Ponten, T., Willenbrock, H., Hallin, P. F., Wassenaar, T. M. & Ussery, D. W. ( 2005; ). Genome update: sigma factors in 240 bacterial genomes. Microbiology 151, 3147–3150.[CrossRef]
    [Google Scholar]
  14. Kraemer, P. S., Mitchell, A., Pelletier, M. R., Gallagher, L. A., Wasnick, M., Rohmer, L., Brittnacher, M. J., Manoil, C., Skerett, S. J. & Salama, N. R. ( 2009; ). Genome-wide screen in Francisella novicida for genes required for pulmonary and systemic infection in mice. Infect Immun 77, 232–244.[CrossRef]
    [Google Scholar]
  15. Lai, X. H., Golovliov, I. & Sjostedt, A. ( 2004; ). Expression of IglC is necessary for intracellular growth and induction of apoptosis in murine macrophages by Francisella tularensis. Microb Pathog 37, 225–230.[CrossRef]
    [Google Scholar]
  16. Larsson, P., Oyston, P. C., Chain, P., Chu, M. C., Duffield, M., Fuxelius, H. H., Garcia, E., Hälltorp, G., Johansson, D. & other authors ( 2005; ). The complete genome sequence of Francisella tularensis, the causative agent of tularemia. Nat Genet 37, 153–159.[CrossRef]
    [Google Scholar]
  17. Laskos, L., Ryan, C. S., Fyfe, J. A. M. & Davies, J. K. ( 2004; ). The RpoH-mediated stress response in Nesseria gonorrhoeae is regulated at the level of activity. J Bacteriol 186, 8443–8452.[CrossRef]
    [Google Scholar]
  18. Lenco, J., Pavkova, I., Hubalek, M. & Stulik, J. ( 2005; ). Insights into the oxidative stress response in Francisella tularensis LVS and its mutant ΔiglC1+2 by proteomics analysis. FEMS Microbiol Lett 246, 47–54.[CrossRef]
    [Google Scholar]
  19. Liu, X., Brutlag, D. L. & Liu, J. S. ( 2001; ). BioProspector: discovering conserved DNA motifs in upstream regulatory regions of co-expressed genes. Pac Symp Biocomput 127–138.
    [Google Scholar]
  20. Ludu, J. S., de Bruin, O. M., Duplantis, B. N., Schmerk, C. L., Chou, A. Y., Elkins, K. L. & Nano, F. E. ( 2008; ). The Francisella pathogenicity island protein PdpD is required for full virulence and associates with homologues of the type VI secretion system. J Bacteriol 190, 4584–4595.[CrossRef]
    [Google Scholar]
  21. Maier, T. M., Havig, A., Casey, M., Nano, F. E., Frank, D. W. & Zahrt, T. C. ( 2004; ). Construction and characterization of a highly efficient Francisella shuttle plasmid. Appl Environ Microbiol 70, 7511–7519.[CrossRef]
    [Google Scholar]
  22. Maier, T. M., Pechous, R., Casey, M., Zahrt, T. C. & Frank, D. W. ( 2006; ). In vivo Himar1-based transposon mutagenesis of Francisella tularensis. Appl Environ Microbiol 72, 1878–1885.[CrossRef]
    [Google Scholar]
  23. Maier, T. M., Casey, M. S., Becker, R. H., Dorsey, C. W., Glass, E. M., Maltsev, N., Zahrt, T. C. & Frank, D. W. ( 2007; ). Identification of Francisella tularensis Himar1-based transposon mutants defective for replication in macrophages. Infect Immun 75, 5376–5389.[CrossRef]
    [Google Scholar]
  24. McLendon, M. K., Apicella, M. A. & Allen, L. A. ( 2006; ). Francisella tularensis: taxonomy, genetics, and immunopathogenesis of a potential agent of biowarfare. Annu Rev Microbiol 60, 167–185.[CrossRef]
    [Google Scholar]
  25. Meibom, K. L., Dubail, I., Dupuis, M., Barel, M., Lenco, J., Stulik, J., Golovliov, I., Sjostedt, A. & Charbit, A. ( 2008; ). The heat-shock protein ClpB of Francisella tularensis is involved in stress tolerance and is required for multiplication in target organs of infected mice. Mol Microbiol 67, 1384–1401.[CrossRef]
    [Google Scholar]
  26. Meibom, K. L., Forslund, A. L., Kuoppa, K., Alkhuder, K., Dubail, I., Dupuis, M., Forsberg, A. & Charbit, A. ( 2009; ). Hfq, a novel pleiotropic regulator of virulence-associated genes in Francisella tularensis. Infect Immun 77, 1866–1880.[CrossRef]
    [Google Scholar]
  27. Mohapatra, N. P., Soni, S., Bell, B. L., Warren, R., Ernst, R. K., Muszynski, A., Carlson, R. W. & Gunn, J. S. ( 2007; ). Identification of an orphan response regulator required for the virulence of Francisella spp. and transcription of pathogenicity island genes. Infect Immun 75, 3305–3314.[CrossRef]
    [Google Scholar]
  28. Nakahigashi, K., Yanagi, H. & Yura, T. ( 1995; ). Isolation and sequence analysis of rpoH genes encoding σ 32 homologs from Gram negative bacteria: conserved mRNA and protein segments for heat shock regulation. Nucleic Acids Res 23, 4383–4390.
    [Google Scholar]
  29. Nano, F. E. & Schmerk, C. ( 2007; ). The Francisella pathogenicity island. Ann N Y Acad Sci 1105, 122–137.[CrossRef]
    [Google Scholar]
  30. Nano, F. E., Zhang, N., Cowley, S. C., Klose, K. E., Cheung, K. K., Roberts, M. J., Ludu, J. S., Letendre, G. W., Meierovics, A. I. & other authors ( 2004; ). A Francisella tularensis pathogenicity island required for intramacrophage growth. J Bacteriol 186, 6430–6436.[CrossRef]
    [Google Scholar]
  31. Nonaka, G., Blankschien, M., Herman, C., Gross, C. A. & Rhodius, V. A. ( 2006; ). Regulon and promoter analysis of the E. coli heat-shock factor, σ 32, reveals a multifaceted cellular response to heat stress. Genes Dev 20, 1776–1789.[CrossRef]
    [Google Scholar]
  32. Rodrigue, S., Provvedi, R., Jacques, P. E., Gaudreau, L. & Manganelli, R. ( 2006; ). The σ factors of Mycobacterium tuberculosis. FEMS Microbiol Rev 30, 926–941.[CrossRef]
    [Google Scholar]
  33. Santic, M., Molmeret, M., Barker, J. R., Klose, K. E., Dekanic, A., Doric, M. & Kwaik, Y. A. ( 2007; ). A Francisella tularensis pathogenicity island protein essential for bacterial proliferation within the host cell cytosol. Cell Microbiol 9, 2391–2403.[CrossRef]
    [Google Scholar]
  34. Sjostedt, A. ( 2006; ). Intracellular survival mechanisms of Francisella tularensis, a stealth pathogen. Microbes Infect 8, 561–567.[CrossRef]
    [Google Scholar]
  35. Slamti, L., Livny, J. & Waldor, M. K. ( 2007; ). Global gene expression and phenotypic analysis of a Vibrio cholerae rpoH deletion mutant. J Bacteriol 189, 351–362.[CrossRef]
    [Google Scholar]
  36. Su, J., Yang, J., Zhao, D., Kawula, T. H., Banas, J. A. & Zhang, J.-R. ( 2007; ). Genome-wide identification of Francisella tularensis virulence determinants. Infect Immun 75, 3089–3101.[CrossRef]
    [Google Scholar]
  37. Tempel, R., Lai, X. H., Crosa, L., Kozlowicz, B. & Heffron, F. ( 2006; ). Attenuated Francisella novicida transposon mutants protect mice against wild-type challenge. Infect Immun 74, 5095–5105.[CrossRef]
    [Google Scholar]
  38. Tusher, V. G., Tibshirani, R. & Chu, G. ( 2001; ). Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci U S A 98, 5116–5121.[CrossRef]
    [Google Scholar]
  39. van Helden, J. ( 2003; ). Regulatory sequence analysis tools. Nucleic Acids Res 31, 3593–3596.[CrossRef]
    [Google Scholar]
  40. Weiss, D. S., Brotcke, A., Henry, T., Margolis, J. J., Chan, K. & Monack, D. M. ( 2007; ). In vivo negative selection screen identifies genes required for Francisella virulence. Proc Natl Acad Sci U S A 104, 6037–6042.[CrossRef]
    [Google Scholar]
  41. Yura, T., Guisbert, E., Poritz, M., Lu, C. Z., Campbell, E. & Gross, C. A. ( 2007; ). Analysis of σ 32 mutants defective in chaperone-mediated feedback control reveals unexpected complexity of the heat shock response. Proc Natl Acad Sci U S A 104, 17638–17643.[CrossRef]
    [Google Scholar]
  42. Zhao, K., Liu, M. & Burgess, R. R. ( 2005; ). The global transcriptional response of Escherichia coli to induced σ 32 protein involves σ 32 regulon activation followed by inactivation and degradation of σ 32 in vivo. J Biol Chem 280, 17758–17768.[CrossRef]
    [Google Scholar]
  43. Zhou, Y. N., Kusukawa, N., Erickson, J. W., Gross, C. A. & Yura, T. ( 1988; ). Isolation and characterization of Escherichia coli mutants that lack the heat shock sigma factor σ 32. J Bacteriol 170, 3640–3649.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.029058-0
Loading
/content/journal/micro/10.1099/mic.0.029058-0
Loading

Data & Media loading...

Supplements

Primers used in this study [PDF file](68 KB)

PDF

Genes significantly decreased in expression (at least twofold) after temperature upshift [PDF file](42 KB)

PDF

Genes that were used in BioProspector analysis [PDF file](22 KB)

PDF

Putative binding sites found by BioProspector and used for building of matrices [PDF file](64 KB)

PDF

Genes with potential s binding sequence in their promoter region [PDF file](152 KB)

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error