1887

Abstract

is a highly infectious pathogen that infects animals and humans to cause the disease tularemia. The primary targets of this bacterium are macrophages, in which it replicates in the cytoplasm after escaping the initial phagosomal compartment. The ability to replicate within macrophages relies on the tightly regulated expression of a series of genes. One of the most commonly used means of coordinating the regulation of multiple genes in bacteria consists of the association of dedicated alternative sigma factors with the core of the RNA polymerase (RNAP). analysis of the LVS genome led us to identify, in addition to the genes encoding the RNAP core (comprising the 1, 2, , ′ and subunits), one gene (designated ) encoding the major sigma factor , and a unique gene () encoding a putative alternative sigma factor homologue of the heat-shock family (designated ). Hence, represents one of the minority of bacterial species that possess only one or no alternative sigma factor in addition to the main factor . In the present work, we show that encodes a genuine factor. Transcriptomic analyses of the LVS heat-stress response allowed the identification of a series of orthologues of known heat-shock genes (including those for Hsp40, GroEL, GroES, DnaK, DnaJ, GrpE, ClpB and ClpP) and a number of genes implicated in virulence. A bioinformatic analysis was used to identify genes preceded by a putative -binding site, revealing both similarities to and differences from RpoH-mediated gene expression in . Our results suggest that RpoH is an essential protein of , and positively regulates a subset of genes involved in the heat-shock response.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.029058-0
2009-08-01
2020-07-03
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/8/2560.html?itemId=/content/journal/micro/10.1099/mic.0.029058-0&mimeType=html&fmt=ahah

References

  1. Arsène F., Tomoyasu T., Bukau B.. 2000; The heat shock response of Escherichia coli. Int J Food Microbiol55:3–9
    [Google Scholar]
  2. Brotcke A., Weiss D. S., Kim C. C., Chain P., Malfatti S., Garcia E., Monack D. M.. 2006; Identification of MglA-regulated genes reveals novel virulence factors in Francisella tularensis. Infect Immun74:6642–6655
    [Google Scholar]
  3. Charity J. C., Costante-Hamm M. M., Balon E. L., Boyd D. H., Rubin E. J., Dove S. L.. 2007; Twin RNA polymerase-associated proteins control virulence gene expression in Francisella tularensis. PLoS Pathog3:e84
    [Google Scholar]
  4. de Bruin O. M., Ludu J. S., Nano F. E.. 2007; The Francisella pathogenicity island protein IglA localizes to the bacterial cytoplasm and is needed for intracellular growth. BMC Microbiol7:1
    [Google Scholar]
  5. Ericsson M., Tarnvik A., Kuoppa K., Sandstrom G., Sjostedt A.. 1994; Increased synthesis of DnaK, GroEL, and GroES homologs by Francisella tularensis LVS in response to heat and hydrogen peroxide. Infect Immun62:178–183
    [Google Scholar]
  6. Golovliov I., Sjostedt A., Mokrievich A., Pavlov V.. 2003; A method for allelic replacement in Francisella tularensis. FEMS Microbiol Lett222:273–280
    [Google Scholar]
  7. Gourse R. L., Ross W., Rutherford S. T.. 2006; General pathway for turning on promoters transcribed by RNA polymerases containing alternative σ factors. J Bacteriol188:4589–4591
    [Google Scholar]
  8. Gray C. G., Cowley S. C., Cheung K. K., Nano F. E.. 2002; The identification of five genetic loci of Francisella novicida associated with intracellular growth. FEMS Microbiol Lett215:53–56
    [Google Scholar]
  9. Gruber T. M., Gross C. A.. 2003; Multiple sigma subunits and the partitioning of bacterial transcription space. Annu Rev Microbiol57:441–466
    [Google Scholar]
  10. Guisbert E., Yura T., Rhodius V. A., Gross C. A.. 2008; Convergence of molecular, modeling, and systems approaches for an understanding of the Escherichia coli heat shock response. Microbiol Mol Biol Rev72:545–554
    [Google Scholar]
  11. Gunesekere I. C., Kahler C. M., Powell D. R., Snyder L. A. S., Saunders N. J., Rood J. I., Davies J. K.. 2006; Comparison of the RpoH-dependent regulon and the general stress response in Neisseria gonorrhoeae. J Bacteriol188:4769–4776
    [Google Scholar]
  12. Horzempa J., Carlson P. E. Jr, O'Dee D. M., Shanks R. M., Nau G. J.. 2008; Global transcriptional response to mammalian temperature provides new insight into Francisella tularensis pathogenesis. BMC Microbiol8:172
    [Google Scholar]
  13. Kill K., Binnewies T. T., Sicheritz-Ponten T., Willenbrock H., Hallin P. F., Wassenaar T. M., Ussery D. W.. 2005; Genome update: sigma factors in 240 bacterial genomes. Microbiology151:3147–3150
    [Google Scholar]
  14. Kraemer P. S., Mitchell A., Pelletier M. R., Gallagher L. A., Wasnick M., Rohmer L., Brittnacher M. J., Manoil C., Skerett S. J., Salama N. R.. 2009; Genome-wide screen in Francisella novicida for genes required for pulmonary and systemic infection in mice. Infect Immun77:232–244
    [Google Scholar]
  15. Lai X. H., Golovliov I., Sjostedt A.. 2004; Expression of IglC is necessary for intracellular growth and induction of apoptosis in murine macrophages by Francisella tularensis. Microb Pathog37:225–230
    [Google Scholar]
  16. Larsson P., Oyston P. C., Chain P., Chu M. C., Duffield M., Fuxelius H. H., Garcia E., Hälltorp G., Johansson D.. other authors 2005; The complete genome sequence of Francisella tularensis, the causative agent of tularemia. Nat Genet37:153–159
    [Google Scholar]
  17. Laskos L., Ryan C. S., Fyfe J. A. M., Davies J. K.. 2004; The RpoH-mediated stress response in Nesseria gonorrhoeae is regulated at the level of activity. J Bacteriol186:8443–8452
    [Google Scholar]
  18. Lenco J., Pavkova I., Hubalek M., Stulik J.. 2005; Insights into the oxidative stress response in Francisella tularensis LVS and its mutant Δ iglC1+2 by proteomics analysis. FEMS Microbiol Lett246:47–54
    [Google Scholar]
  19. Liu X., Brutlag D. L., Liu J. S.. 2001; BioProspector: discovering conserved DNA motifs in upstream regulatory regions of co-expressed genes Pac Symp Biocomput;127–138
    [Google Scholar]
  20. Ludu J. S., de Bruin O. M., Duplantis B. N., Schmerk C. L., Chou A. Y., Elkins K. L., Nano F. E.. 2008; The Francisella pathogenicity island protein PdpD is required for full virulence and associates with homologues of the type VI secretion system. J Bacteriol190:4584–4595
    [Google Scholar]
  21. Maier T. M., Havig A., Casey M., Nano F. E., Frank D. W., Zahrt T. C.. 2004; Construction and characterization of a highly efficient Francisella shuttle plasmid. Appl Environ Microbiol70:7511–7519
    [Google Scholar]
  22. Maier T. M., Pechous R., Casey M., Zahrt T. C., Frank D. W.. 2006; In vivo Himar1-based transposon mutagenesis of Francisella tularensis. Appl Environ Microbiol72:1878–1885
    [Google Scholar]
  23. Maier T. M., Casey M. S., Becker R. H., Dorsey C. W., Glass E. M., Maltsev N., Zahrt T. C., Frank D. W.. 2007; Identification of Francisella tularensis Himar1-based transposon mutants defective for replication in macrophages. Infect Immun75:5376–5389
    [Google Scholar]
  24. McLendon M. K., Apicella M. A., Allen L. A.. 2006; Francisella tularensis: taxonomy, genetics, and immunopathogenesis of a potential agent of biowarfare. Annu Rev Microbiol60:167–185
    [Google Scholar]
  25. Meibom K. L., Dubail I., Dupuis M., Barel M., Lenco J., Stulik J., Golovliov I., Sjostedt A., Charbit A.. 2008; The heat-shock protein ClpB of Francisella tularensis is involved in stress tolerance and is required for multiplication in target organs of infected mice. Mol Microbiol67:1384–1401
    [Google Scholar]
  26. Meibom K. L., Forslund A. L., Kuoppa K., Alkhuder K., Dubail I., Dupuis M., Forsberg A., Charbit A.. 2009; Hfq, a novel pleiotropic regulator of virulence-associated genes in Francisella tularensis. Infect Immun77:1866–1880
    [Google Scholar]
  27. Mohapatra N. P., Soni S., Bell B. L., Warren R., Ernst R. K., Muszynski A., Carlson R. W., Gunn J. S.. 2007; Identification of an orphan response regulator required for the virulence of Francisella spp. and transcription of pathogenicity island genes. Infect Immun75:3305–3314
    [Google Scholar]
  28. Nakahigashi K., Yanagi H., Yura T.. 1995; Isolation and sequence analysis of rpoH genes encoding σ 32 homologs from Gram negative bacteria: conserved mRNA and protein segments for heat shock regulation. Nucleic Acids Res23:4383–4390
    [Google Scholar]
  29. Nano F. E., Schmerk C.. 2007; The Francisella pathogenicity island. Ann N Y Acad Sci 1105;122–137
    [Google Scholar]
  30. Nano F. E., Zhang N., Cowley S. C., Klose K. E., Cheung K. K., Roberts M. J., Ludu J. S., Letendre G. W., Meierovics A. I.. other authors 2004; A Francisella tularensis pathogenicity island required for intramacrophage growth. J Bacteriol186:6430–6436
    [Google Scholar]
  31. Nonaka G., Blankschien M., Herman C., Gross C. A., Rhodius V. A.. 2006; Regulon and promoter analysis of the E. coli heat-shock factor, σ 32, reveals a multifaceted cellular response to heat stress. Genes Dev20:1776–1789
    [Google Scholar]
  32. Rodrigue S., Provvedi R., Jacques P. E., Gaudreau L., Manganelli R.. 2006; The σ factors of Mycobacterium tuberculosis. FEMS Microbiol Rev30:926–941
    [Google Scholar]
  33. Santic M., Molmeret M., Barker J. R., Klose K. E., Dekanic A., Doric M., Kwaik Y. A.. 2007; A Francisella tularensis pathogenicity island protein essential for bacterial proliferation within the host cell cytosol. Cell Microbiol9:2391–2403
    [Google Scholar]
  34. Sjostedt A.. 2006; Intracellular survival mechanisms of Francisella tularensis, a stealth pathogen. Microbes Infect8:561–567
    [Google Scholar]
  35. Slamti L., Livny J., Waldor M. K.. 2007; Global gene expression and phenotypic analysis of a Vibrio cholerae rpoH deletion mutant. J Bacteriol189:351–362
    [Google Scholar]
  36. Su J., Yang J., Zhao D., Kawula T. H., Banas J. A., Zhang J.-R.. 2007; Genome-wide identification of Francisella tularensis virulence determinants. Infect Immun75:3089–3101
    [Google Scholar]
  37. Tempel R., Lai X. H., Crosa L., Kozlowicz B., Heffron F.. 2006; Attenuated Francisella novicida transposon mutants protect mice against wild-type challenge. Infect Immun74:5095–5105
    [Google Scholar]
  38. Tusher V. G., Tibshirani R., Chu G.. 2001; Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci U S A98:5116–5121
    [Google Scholar]
  39. van Helden J.. 2003; Regulatory sequence analysis tools. Nucleic Acids Res31:3593–3596
    [Google Scholar]
  40. Weiss D. S., Brotcke A., Henry T., Margolis J. J., Chan K., Monack D. M.. 2007; In vivo negative selection screen identifies genes required for Francisella virulence. Proc Natl Acad Sci U S A104:6037–6042
    [Google Scholar]
  41. Yura T., Guisbert E., Poritz M., Lu C. Z., Campbell E., Gross C. A.. 2007; Analysis of σ 32 mutants defective in chaperone-mediated feedback control reveals unexpected complexity of the heat shock response. Proc Natl Acad Sci U S A104:17638–17643
    [Google Scholar]
  42. Zhao K., Liu M., Burgess R. R.. 2005; The global transcriptional response of Escherichia coli to induced σ 32 protein involves σ 32 regulon activation followed by inactivation and degradation of σ 32 in vivo. J Biol Chem280:17758–17768
    [Google Scholar]
  43. Zhou Y. N., Kusukawa N., Erickson J. W., Gross C. A., Yura T.. 1988; Isolation and characterization of Escherichia coli mutants that lack the heat shock sigma factor σ 32. J Bacteriol170:3640–3649
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.029058-0
Loading
/content/journal/micro/10.1099/mic.0.029058-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error