1887

Abstract

In this study we report on a novel structural phenotype in biofilms: cellular chain formation. Biofilm chaining in K-12 was found to occur primarily by clonal expansion, but was not due to filamentous growth. Rather, chain formation was the result of intercellular interactions facilitated by antigen 43 (Ag43), a self-associating autotransporter (SAAT) protein, which has previously been implicated in auto-aggregation and biofilm formation. Immunofluorescence microscopy suggested that Ag43 was concentrated at or near the cell poles, although when the antigen was highly overexpressed, a much more uniform distribution was seen. Immunofluorescence microscopy also indicated that other parameters, including dimensional constraints (flow, growth alongside a surface), may also affect the final biofilm architecture. Moreover, chain formation was affected by other surface structures; type I fimbriae expression significantly reduced cellular chain formation, presumably by steric hindrance. Cellular chain formation did not appear to be specific to K-12. Although many urinary tract infection (UTI) isolates were found to form rather homogeneous, flat biofilms, three isolates, including the prototypic asymptomatic bacteriuria strain, 83972, formed highly elaborate cellular chains during biofilm growth in human urine. Combined, these results illustrate the diversity of biofilm architectures that can be observed even within a single microbial species.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.026419-0
2009-05-01
2020-01-21
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/5/1407.html?itemId=/content/journal/micro/10.1099/mic.0.026419-0&mimeType=html&fmt=ahah

References

  1. Ammendola, A., Geisenberger, O., Andersen, J. B., Givskov, M., Schleifer, K. H. & Eberl, L. ( 1998; ). Serratia liquefaciens swarm cells exhibit enhanced resistance to predation by Tetrahymena sp. FEMS Microbiol Lett 164, 69–75.[CrossRef]
    [Google Scholar]
  2. Anderson, G. G., Palermo, J. J., Schilling, J. D., Roth, R., Heuser, J. & Hultgren, S. J. ( 2003; ). Intracellular bacterial biofilm-like pods in urinary tract infections. Science 301, 105–107.[CrossRef]
    [Google Scholar]
  3. Bachmann, B. J. ( 1996; ). Derivations and genotypes of some mutant derivatives of Escherichia coli K-12. In Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd edn, pp. 2460–2488. Edited by F. C. Neidhardt & others. Washington, DC: American Society for Microbiology.
  4. Benz, I. & Schmidt, M. A. ( 1992; ). Isolation and serologic characterization of AIDA-I, the adhesin mediating the diffuse adherence phenotype of the diarrhea-associated Escherichia coli strain 2787 (O126 : H27). Infect Immun 60, 13–18.
    [Google Scholar]
  5. Bolivar, F., Rodriguez, R. L., Greene, P. J., Betlach, M. C., Heyneker, H. L. & Boyer, H. W. ( 1977; ). Construction and characterization of new cloning vehicles. II. A multipurpose cloning system. Gene 2, 95–113.[CrossRef]
    [Google Scholar]
  6. Chang, A. C. & Cohen, S. N. ( 1978; ). Construction and characterization of amplifiable multicopy DNA cloning vehicles derived from the P15A cryptic miniplasmid. J Bacteriol 134, 1141–1156.
    [Google Scholar]
  7. Christensen, B. B., Sternberg, C., Andersen, J. B., Palmer, R. J., Jr, Nielsen, A. T., Givskov, M. & Molin, S. ( 1999; ). Molecular tools for study of biofilm physiology. Methods Enzymol 310, 20–42.
    [Google Scholar]
  8. Costerton, J. W., Geesey, G. G. & Cheng, K. J. ( 1978; ). How bacteria stick. Sci Am 238, 86–95.[CrossRef]
    [Google Scholar]
  9. Costerton, J. W., Lewandowski, Z., Caldwell, D. E., Korber, D. R. & Lappin-Scott, H. M. ( 1995; ). Microbial biofilms. Annu Rev Microbiol 49, 711–745.[CrossRef]
    [Google Scholar]
  10. Costerton, J. W., Stewart, P. S. & Greenberg, E. P. ( 1999; ). Bacterial biofilms: a common cause of persistent infections. Science 284, 1318–1322.[CrossRef]
    [Google Scholar]
  11. Dalton, H. M., Poulsen, L. K., Halasz, P., Angles, M. L., Goodman, A. E. & Marshall, K. C. ( 1994; ). Substratum-induced morphological changes in a marine bacterium and their relevance to biofilm structure. J Bacteriol 176, 6900–6906.
    [Google Scholar]
  12. Danese, P. N., Pratt, L. A., Dove, S. L. & Kolter, R. ( 2000a; ). The outer membrane protein, antigen 43, mediates cell-to-cell interactions within Escherichia coli biofilms. Mol Microbiol 37, 424–432.[CrossRef]
    [Google Scholar]
  13. Danese, P. N., Pratt, L. A. & Kolter, R. ( 2000b; ). Exopolysaccharide production is required for development of Escherichia coli K-12 biofilm architecture. J Bacteriol 182, 3593–3596.[CrossRef]
    [Google Scholar]
  14. Datsenko, K. A. & Wanner, B. L. ( 2000; ). One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97, 6640–6645.[CrossRef]
    [Google Scholar]
  15. Diderichsen, B. ( 1980; ). flu, a metastable gene controlling surface properties of Escherichia coli. J Bacteriol 141, 858–867.
    [Google Scholar]
  16. Diederich, L., Rasmussen, L. J. & Messer, W. ( 1992; ). New cloning vectors for integration into the lambda attachment site attB of the Escherichia coli chromosome. Plasmid 28, 14–24.[CrossRef]
    [Google Scholar]
  17. Donlan, R. M. & Costerton, B. ( 2002; ). Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 15, 167–193.[CrossRef]
    [Google Scholar]
  18. Ferrières, L., Hancock, V. & Klemm, P. ( 2007; ). Biofilm exclusion of uropathogenic bacteria by selected asymptomatic bacteriuria Escherichia coli strains. Microbiology 153, 1711–1719.[CrossRef]
    [Google Scholar]
  19. Geesey, G. G., Richardson, W. T., Yeomans, H. G., Irvin, R. T. & Costerton, J. W. ( 1977; ). Microscopic examination of natural sessile bacterial populations from an alpine stream. Can J Microbiol 23, 1733–1736.[CrossRef]
    [Google Scholar]
  20. Gioppo, N. M., Elias, W. P., Jr, Vidotto, M. C., Linhares, R. E., Saridakis, H. O., Gomes, T. A., Trabulsi, L. R. & Pelayo, J. S. ( 2000; ). Prevalence of HEp-2 cell-adherent Escherichia coli and characterisation of enteroaggregative E. coli and chain-like adherent E. coli isolated from children with and without diarrhoea, in Londrina, Brazil. FEMS Microbiol Lett 190, 293–298.[CrossRef]
    [Google Scholar]
  21. Guzman, L. M., Belin, D., Carson, M. J. & Beckwith, J. ( 1995; ). Tight regulation, modulation, and high-level expression by vectors containing the arabinose pBAD promoter. J Bacteriol 177, 4121–4130.
    [Google Scholar]
  22. Haagensen, J. A., Klausen, M., Ernst, R. K., Miller, S. I., Folkesson, A., Tolker-Nielsen, T. & Molin, S. ( 2007; ). Differentiation and distribution of colistin- and sodium dodecyl sulfate-tolerant cells in Pseudomonas aeruginosa biofilms. J Bacteriol 189, 28–37.[CrossRef]
    [Google Scholar]
  23. Hancock, V., Ferrières, L. & Klemm, P. ( 2007; ). Biofilm formation by asymptomatic and virulent urinary tract infectious Escherichia coli strains. FEMS Microbiol Lett 267, 30–37.[CrossRef]
    [Google Scholar]
  24. Hasman, H., Chakraborty, T. & Klemm, P. ( 1999; ). Antigen-43-mediated autoaggregation of Escherichia coli is blocked by fimbriation. J Bacteriol 181, 4834–4841.
    [Google Scholar]
  25. Hasman, H., Schembri, M. A. & Klemm, P. ( 2000; ). Antigen 43 and type 1 fimbriae determine colony morphology of Escherichia coli K-12. J Bacteriol 182, 1089–1095.[CrossRef]
    [Google Scholar]
  26. Henderson, I. R., Meehan, M. & Owen, P. ( 1997a; ). A novel regulatory mechanism for a novel phase-variable outer membrane protein of Escherichia coli. Adv Exp Med Biol 412, 349–355.
    [Google Scholar]
  27. Henderson, I. R., Meehan, M. & Owen, P. ( 1997b; ). Antigen 43, a phase-variable bipartite outer membrane protein, determines colony morphology and autoaggregation in Escherichia coli K-12. FEMS Microbiol Lett 149, 115–120.[CrossRef]
    [Google Scholar]
  28. Henderson, I. R., Navarro-Garcia, F., Desvaux, M., Fernandez, R. C. & Ala'Aldeen, D. ( 2004; ). Type V protein secretion pathway: the autotransporter story. Microbiol Mol Biol Rev 68, 692–744.[CrossRef]
    [Google Scholar]
  29. Hull, R. A., Gill, R. E., Hsu, P., Minshew, B. H. & Falkow, S. ( 1981; ). Construction and expression of recombinant plasmids encoding type 1 or d-mannose-resistant pili from a urinary tract infection Escherichia coli isolate. Infect Immun 33, 933–938.
    [Google Scholar]
  30. Hultgren, S. J., Schwan, W. R., Schaeffer, A. J. & Duncan, J. L. ( 1986; ). Regulation of production of type 1 pili among urinary tract isolates of Escherichia coli. Infect Immun 54, 613–620.
    [Google Scholar]
  31. Jain, S., van Ulsen, P., Benz, I., Schmidt, M. A., Fernandez, R., Tommassen, J. & Goldberg, M. B. ( 2006; ). Polar localization of the autotransporter family of large bacterial virulence proteins. J Bacteriol 188, 4841–4850.[CrossRef]
    [Google Scholar]
  32. Justice, S. S., Hung, C., Theriot, J. A., Fletcher, D. A., Anderson, G. G., Footer, M. J. & Hultgren, S. J. ( 2004; ). Differentiation and developmental pathways of uropathogenic Escherichia coli in urinary tract pathogenesis. Proc Natl Acad Sci U S A 101, 1333–1338.[CrossRef]
    [Google Scholar]
  33. Justice, S. S., Hunstad, D. A., Seed, P. C. & Hultgren, S. J. ( 2006; ). Filamentation by Escherichia coli subverts innate defenses during urinary tract infection. Proc Natl Acad Sci U S A 103, 19884–19889.[CrossRef]
    [Google Scholar]
  34. Kaper, J. B., Nataro, J. P. & Mobley, H. L. ( 2004; ). Pathogenic Escherichia coli. Nat Rev Microbiol 2, 123–140.[CrossRef]
    [Google Scholar]
  35. Kjaergaard, K., Schembri, M. A., Hasman, H. & Klemm, P. ( 2000a; ). Antigen 43 from Escherichia coli induces inter- and intraspecies cell aggregation and changes in colony morphology of Pseudomonas fluorescens. J Bacteriol 182, 4789–4796.[CrossRef]
    [Google Scholar]
  36. Kjaergaard, K., Schembri, M. A., Ramos, C., Molin, S. & Klemm, P. ( 2000b; ). Antigen 43 facilitates formation of multispecies biofilms. Environ Microbiol 2, 695–702.[CrossRef]
    [Google Scholar]
  37. Kjaergaard, K., Hasman, H., Schembri, M. A. & Klemm, P. ( 2002; ). Antigen 43-mediated autotransporter display, a versatile bacterial cell surface presentation system. J Bacteriol 184, 4197–4204.[CrossRef]
    [Google Scholar]
  38. Klemm, P., Jorgensen, B. J., van Die, I., de Ree, H. & Bergmans, H. ( 1985; ). The fim genes responsible for synthesis of type 1 fimbriae in Escherichia coli, cloning and genetic organization. Mol Gen Genet 199, 410–414.[CrossRef]
    [Google Scholar]
  39. Klemm, P., Hjerrild, L., Gjermansen, M. & Schembri, M. A. ( 2004; ). Structure-function analysis of the self-recognizing antigen 43 autotransporter protein from Escherichia coli. Mol Microbiol 51, 283–296.
    [Google Scholar]
  40. Klemm, P., Vejborg, R. M. & Sherlock, O. ( 2006; ). Self-associating autotransporters, SAATs: functional and structural similarities. Int J Med Microbiol 296, 187–195.[CrossRef]
    [Google Scholar]
  41. Labbate, M., Queck, S. Y., Koh, K. S., Rice, S. A., Givskov, M. & Kjelleberg, S. ( 2004; ). Quorum sensing-controlled biofilm development in Serratia liquefaciens MG1. J Bacteriol 186, 692–698.[CrossRef]
    [Google Scholar]
  42. Lee Wong, A. C. ( 1998; ). Biofilms in food processing environments. J Dairy Sci 81, 2765–2770.[CrossRef]
    [Google Scholar]
  43. Lindberg, U., Hanson, L. A., Jodal, U., Lidin-Janson, G., Lincoln, K. & Olling, S. ( 1975; ). Asymptomatic bacteriuria in schoolgirls. II. Differences in Escherichia coli causing asymptomatic bacteriuria. Acta Paediatr Scand 64, 432–436.[CrossRef]
    [Google Scholar]
  44. Lu, Y., Iyoda, S., Satou, H., Itoh, K., Saitoh, T. & Watanabe, H. ( 2006; ). A new immunoglobulin-binding protein, EibG, is responsible for the chain-like adhesion phenotype of locus of enterocyte effacement-negative, Shiga toxin-producing Escherichia coli. Infect Immun 74, 5747–5755.[CrossRef]
    [Google Scholar]
  45. Marild, S., Jodal, U., Orskov, I., Orskov, F. & Svanborg-Eden, C. ( 1989; ). Special virulence of the Escherichia coli O1 : K1 : H7 clone in acute pyelonephritis. J Pediatr 115, 40–45.[CrossRef]
    [Google Scholar]
  46. Miller, J. H. ( 1992; ). A Short Course in Bacterial Genetics. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  47. Neidhardt, F. C., Bloch, P. L. & Smith, D. F. ( 1974; ). Culture medium for enterobacteria. J Bacteriol 119, 736–747.
    [Google Scholar]
  48. O'Toole, G. A. & Kolter, R. ( 1998; ). Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis. Mol Microbiol 28, 449–461.[CrossRef]
    [Google Scholar]
  49. O'Toole, G., Kaplan, H. B. & Kolter, R. ( 2000; ). Biofilm formation as microbial development. Annu Rev Microbiol 54, 49–79.[CrossRef]
    [Google Scholar]
  50. Owen, P., Meehan, M., de Loughry-Doherty, H. & Henderson, I. ( 1996; ). Phase-variable outer membrane proteins in Escherichia coli. FEMS Immunol Med Microbiol 16, 63–76.[CrossRef]
    [Google Scholar]
  51. Pamp, S. J., Gjermansen, M., Johansen, H. K. & Tolker-Nielsen, T. ( 2008; ). Tolerance to the antimicrobial peptide colistin in Pseudomonas aeruginosa biofilms is linked to metabolically active cells, and depends on the pmr and mexAB-oprM genes. Mol Microbiol 68, 223–240.[CrossRef]
    [Google Scholar]
  52. Pratt, L. A. & Kolter, R. ( 1998; ). Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili. Mol Microbiol 30, 285–293.[CrossRef]
    [Google Scholar]
  53. Purevdorj, B., Costerton, J. W. & Stoodley, P. ( 2002; ). Influence of hydrodynamics and cell signaling on the structure and behavior of Pseudomonas aeruginosa biofilms. Appl Environ Microbiol 68, 4457–4464.[CrossRef]
    [Google Scholar]
  54. Reisner, A., Haagensen, J. A., Schembri, M. A., Zechner, E. L. & Molin, S. ( 2003; ). Development and maturation of Escherichia coli K-12 biofilms. Mol Microbiol 48, 933–946.[CrossRef]
    [Google Scholar]
  55. Reisner, A., Krogfelt, K. A., Klein, B. M., Zechner, E. L. & Molin, S. ( 2006; ). In vitro biofilm formation of commensal and pathogenic Escherichia coli strains: impact of environmental and genetic factors. J Bacteriol 188, 3572–3581.[CrossRef]
    [Google Scholar]
  56. Rice, S. A., Koh, K. S., Queck, S. Y., Labbate, M., Lam, K. W. & Kjelleberg, S. ( 2005; ). Biofilm formation and sloughing in Serratia marcescens are controlled by quorum sensing and nutrient cues. J Bacteriol 187, 3477–3485.[CrossRef]
    [Google Scholar]
  57. Rieu, A., Briandet, R., Habimana, O., Garmyn, D., Guzzo, J. & Piveteau, P. ( 2008; ). Listeria monocytogenes EGD-e biofilms: no mushrooms but a network of knitted chains. Appl Environ Microbiol 74, 4491–4497.[CrossRef]
    [Google Scholar]
  58. Roos, V., Nielsen, E. M. & Klemm, P. ( 2006; ). Asymptomatic bacteriuria Escherichia coli strains: adhesins, growth and competition. FEMS Microbiol Lett 262, 22–30.[CrossRef]
    [Google Scholar]
  59. Schembri, M. A. & Klemm, P. ( 2001; ). Coordinate gene regulation by fimbriae-induced signal transduction. EMBO J 20, 3074–3081.[CrossRef]
    [Google Scholar]
  60. Schembri, M. A., Givskov, M. & Klemm, P. ( 2002; ). An attractive surface: gram-negative bacterial biofilms. Sci STKE 2002, RE6
    [Google Scholar]
  61. Schembri, M. A., Dalsgaard, D. & Klemm, P. ( 2004; ). Capsule shields the function of short bacterial adhesins. J Bacteriol 186, 1249–1257.[CrossRef]
    [Google Scholar]
  62. Sherlock, O., Schembri, M. A., Reisner, A. & Klemm, P. ( 2004; ). Novel roles for the AIDA adhesin from diarrheagenic Escherichia coli: cell aggregation and biofilm formation. J Bacteriol 186, 8058–8065.[CrossRef]
    [Google Scholar]
  63. Sherlock, O., Vejborg, R. M. & Klemm, P. ( 2005; ). The TibA adhesin/invasin from enterotoxigenic Escherichia coli is self-recognizing and induces bacterial aggregation and biofilm formation. Infect Immun 73, 1954–1963.[CrossRef]
    [Google Scholar]
  64. Stentebjerg-Olesen, B., Pallesen, L., Jensen, L. B., Christiansen, G. & Klemm, P. ( 1997; ). Authentic display of a cholera toxin epitope by chimeric type 1 fimbriae: effects of insert position and host background. Microbiology 143, 2027–2038.[CrossRef]
    [Google Scholar]
  65. Stoodley, P., Cargo, R., Rupp, C. J., Wilson, S. & Klapper, I. ( 2002; ). Biofilm material properties as related to shear-induced deformation and detachment phenomena. J Ind Microbiol Biotechnol 29, 361–367.[CrossRef]
    [Google Scholar]
  66. Ulett, G. C., Valle, J., Beloin, C., Sherlock, O., Ghigo, J. M. & Schembri, M. A. ( 2007; ). Functional analysis of antigen 43 in uropathogenic Escherichia coli reveals a role in long-term persistence in the urinary tract. Infect Immun 75, 3233–3244.[CrossRef]
    [Google Scholar]
  67. van der Woude, M. W. & Henderson, I. R. ( 2008; ). Regulation and function of Ag43 (flu). Annu Rev Microbiol 62, 153–169.[CrossRef]
    [Google Scholar]
  68. van Drogen, F. & Peter, M. ( 2004; ). Revealing protein dynamics by photobleaching techniques. Methods Mol Biol 284, 287–306.
    [Google Scholar]
  69. Welch, R. A., Burland, V., Plunkett, G., III, Redford, P., Roesch, P., Rasko, D., Buckles, E. L., Liou, S. R., Boutin, A. & other authors ( 2002; ). Extensive mosaic structure revealed by the complete genome sequence of uropathogenic Escherichia coli. Proc Natl Acad Sci U S A 99, 17020–17024.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.026419-0
Loading
/content/journal/micro/10.1099/mic.0.026419-0
Loading

Data & Media loading...

Supplements

vol. , part 5, pp. 1407 - 1417

Supplementary material(PDF, 53 kb): details of minimal media and primers used for λ-red recombinase-based gene inactivation.



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error