1887

Abstract

Hypochlorous acid (HOCl), the active ingredient of household bleach, functions as a powerful antimicrobial that is used not only in numerous industrial applications but also in mammalian host defence. Here we show that multicopy expression of , encoding the cAMP phosphodiesterase, leads to a dramatically increased resistance of to HOCl stress as well as to the unrelated hydrogen peroxide (HO) stress. This general oxidative stress resistance is apparently caused by the CpdA-mediated decrease in cellular cAMP levels, which leads to the partial inactivation of the global transcriptional regulator cAMP receptor protein (CRP). Downregulation of CRP in turn causes the derepression of , encoding the alternative sigma factor , which activates the general stress response in . We found that these highly oxidative stress-resistant cells have a substantially increased capacity to combat HOCl-mediated insults and to degrade reactive oxygen species. Mutational analysis revealed that the DNA-protecting protein Dps, the catalase KatE, and the exonuclease III XthA play the predominant roles in conferring the high resistance of -overexpressing strains towards HOCl and HO stress. Our results demonstrate the close regulatory interplay between cellular cAMP levels, activity and oxidative stress resistance in .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.026021-0
2009-05-01
2020-01-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/5/1680.html?itemId=/content/journal/micro/10.1099/mic.0.026021-0&mimeType=html&fmt=ahah

References

  1. Aldea, M., Hernandez-Chico, C., de la Campa, A. G., Kushner, S. R. & Vicente, M. ( 1988; ). Identification, cloning, and expression of bolA, an ftsZ-dependent morphogene of Escherichia coli. J Bacteriol 170, 5169–5176.
    [Google Scholar]
  2. Almiron, M., Link, A. J., Furlong, D. & Kolter, R. ( 1992; ). A novel DNA-binding protein with regulatory and protective roles in starved Escherichia coli. Genes Dev 6, 2646–2654.[CrossRef]
    [Google Scholar]
  3. Altuvia, S., Almiron, M., Huisman, G., Kolter, R. & Storz, G. ( 1994; ). The dps promoter is activated by OxyR during growth and by IHF and sigma S in stationary phase. Mol Microbiol 13, 265–272.[CrossRef]
    [Google Scholar]
  4. Apel, K. & Hirt, H. ( 2004; ). Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55, 373–399.[CrossRef]
    [Google Scholar]
  5. Blanchard, J. L., Wholey, W. Y., Conlon, E. M. & Pomposiello, P. J. ( 2007; ). Rapid changes in gene expression dynamics in response to superoxide reveal SoxRS-dependent and independent transcriptional networks. PLoS One 2, e1186 [CrossRef]
    [Google Scholar]
  6. Botsford, J. L. & Harman, J. G. ( 1992; ). Cyclic AMP in prokaryotes. Microbiol Rev 56, 100–122.
    [Google Scholar]
  7. Conter, A., Gangneux, C., Suzanne, M. & Gutierrez, C. ( 2001; ). Survival of Escherichia coli during long-term starvation: effects of aeration, NaCl, and the rpoS and osmC gene products. Res Microbiol 152, 17–26.[CrossRef]
    [Google Scholar]
  8. Davies, M. J. ( 2005; ). The oxidative environment and protein damage. Biochim Biophys Acta 1703, 93–109.[CrossRef]
    [Google Scholar]
  9. Dukan, S. & Touati, D. ( 1996; ). Hypochlorous acid stress in Escherichia coli: resistance, DNA damage, and comparison with hydrogen peroxide stress. J Bacteriol 178, 6145–6150.
    [Google Scholar]
  10. Dukan, S., Dadon, S., Smulski, D. R. & Belkin, S. ( 1996; ). Hypochlorous acid activates the heat shock and soxRS systems of Escherichia coli. Appl Environ Microbiol 62, 4003–4008.
    [Google Scholar]
  11. Gonzalez-Flecha, B. & Demple, B. ( 1997; ). Transcriptional regulation of the Escherichia coli oxyR gene as a function of cell growth. J Bacteriol 179, 6181–6186.
    [Google Scholar]
  12. Graf, P. C., Martinez-Yamout, M., VanHaerents, S., Lilie, H., Dyson, H. J. & Jakob, U. ( 2004; ). Activation of the redox-regulated chaperone Hsp33 by domain unfolding. J Biol Chem 279, 20529–20538.[CrossRef]
    [Google Scholar]
  13. Ha, E. M., Oh, C. T., Bae, Y. S. & Lee, W. J. ( 2005; ). A direct role for dual oxidase in Drosophila gut immunity. Science 310, 847–850.[CrossRef]
    [Google Scholar]
  14. Hawkins, C. L., Pattison, D. I. & Davies, M. J. ( 2003; ). Hypochlorite-induced oxidation of amino acids, peptides and proteins. Amino Acids 25, 259–274.[CrossRef]
    [Google Scholar]
  15. Hengge-Aronis, R. ( 2002; ). Signal transduction and regulatory mechanisms involved in control of the σ S (RpoS) subunit of RNA polymerase. Microbiol Mol Biol Rev 66, 373–395.[CrossRef]
    [Google Scholar]
  16. Ilbert, M., Horst, J., Ahrens, S., Winter, J., Graf, P. C., Lilie, H. & Jakob, U. ( 2007; ). The redox-switch domain of Hsp33 functions as dual stress sensor. Nat Struct Mol Biol 14, 556–563.[CrossRef]
    [Google Scholar]
  17. Imamura, R., Yamanaka, K., Ogura, T., Hiraga, S., Fujita, N., Ishihama, A. & Niki, H. ( 1996; ). Identification of the cpdA gene encoding cyclic 3′,5′-adenosine monophosphate phosphodiesterase in Escherichia coli. J Biol Chem 271, 25423–25429.[CrossRef]
    [Google Scholar]
  18. Imlay, J. A. ( 2003; ). Pathways of oxidative damage. Annu Rev Microbiol 57, 395–418.[CrossRef]
    [Google Scholar]
  19. Ivanova, A. B., Glinsky, G. V. & Eisenstark, A. ( 1997; ). Role of rpoS regulon in resistance to oxidative stress and near-UV radiation in ΔoxyR suppressor mutants of Escherichia coli. Free Radic Biol Med 23, 627–636.[CrossRef]
    [Google Scholar]
  20. Jakob, U., Muse, W., Eser, M. & Bardwell, J. C. ( 1999; ). Chaperone activity with a redox switch. Cell 96, 341–352.[CrossRef]
    [Google Scholar]
  21. Jenkins, D. E., Schultz, J. E. & Matin, A. ( 1988; ). Starvation-induced cross protection against heat or H2O2 challenge in Escherichia coli. J Bacteriol 170, 3910–3914.
    [Google Scholar]
  22. Jeong, K. C., Baumler, D. J. & Kaspar, C. W. ( 2006; ). dps expression in Escherichia coli O157 : H7 requires an extended −10 region and is affected by the cAMP receptor protein. Biochim Biophys Acta 1759, 51–59.[CrossRef]
    [Google Scholar]
  23. Kumar, S. ( 1976; ). Properties of adenyl cyclase and cyclic adenosine 3′,5′-monophosphate receptor protein-deficient mutants of Escherichia coli. J Bacteriol 125, 545–555.
    [Google Scholar]
  24. Lange, R. & Hengge-Aronis, R. ( 1991a; ). Growth phase-regulated expression of bolA and morphology of stationary-phase Escherichia coli cells are controlled by the novel sigma factor sigma S. J Bacteriol 173, 4474–4481.
    [Google Scholar]
  25. Lange, R. & Hengge-Aronis, R. ( 1991b; ). Identification of a central regulator of stationary-phase gene expression in Escherichia coli. Mol Microbiol 5, 49–59.[CrossRef]
    [Google Scholar]
  26. Lange, R. & Hengge-Aronis, R. ( 1994; ). The cellular concentration of the sigma S subunit of RNA polymerase in Escherichia coli is controlled at the levels of transcription, translation, and protein stability. Genes Dev 8, 1600–1612.[CrossRef]
    [Google Scholar]
  27. Lee, H. J., Park, S. J., Choi, S. H. & Lee, K. H. ( 2008; ). Vibrio vulnificus rpoS expression is repressed by direct binding of cAMP-cAMP receptor protein complex to its two promoter regions. J Biol Chem 283, 30438–30450.[CrossRef]
    [Google Scholar]
  28. Lengeler, J. W. & Postma, J. W. ( 1999; ). Global regulatory networks and signal transduction pathways. In Biology of the Prokaryotes, pp. 499–505. Edited by J. W. Lengeler, G. Drews & H. G. Schlegel. Stuttgart, Germany: Blackwell Publishing.
  29. Lesniak, J., Barton, W. A. & Nikolov, D. B. ( 2003; ). Structural and functional features of the Escherichia coli hydroperoxide resistance protein OsmC. Protein Sci 12, 2838–2843.[CrossRef]
    [Google Scholar]
  30. Loewen, P. C. & Hengge-Aronis, R. ( 1994; ). The role of the sigma factor sigma S (KatF) in bacterial global regulation. Annu Rev Microbiol 48, 53–80.[CrossRef]
    [Google Scholar]
  31. McCann, M. P., Kidwell, J. P. & Matin, A. ( 1991; ). The putative sigma factor KatF has a central role in development of starvation-mediated general resistance in Escherichia coli. J Bacteriol 173, 4188–4194.
    [Google Scholar]
  32. Nair, S. & Finkel, S. E. ( 2004; ). Dps protects cells against multiple stresses during stationary phase. J Bacteriol 186, 4192–4198.[CrossRef]
    [Google Scholar]
  33. Richter, W. ( 2002; ). 3′,5′ Cyclic nucleotide phosphodiesterases class III: members, structure, and catalytic mechanism. Proteins 46, 278–286.[CrossRef]
    [Google Scholar]
  34. Santos, J. M., Freire, P., Vicente, M. & Arraiano, C. M. ( 1999; ). The stationary-phase morphogene bolA from Escherichia coli is induced by stress during early stages of growth. Mol Microbiol 32, 789–798.[CrossRef]
    [Google Scholar]
  35. Santos, J. M., Lobo, M., Matos, A. P., De Pedro, M. A. & Arraiano, C. M. ( 2002; ). The gene bolA regulates dacA (PBP5), dacC (PBP6) and ampC (AmpC), promoting normal morphology in Escherichia coli. Mol Microbiol 45, 1729–1740.[CrossRef]
    [Google Scholar]
  36. Shah, S. & Peterkofsky, A. ( 1991; ). Characterization and generation of Escherichia coli adenylate cyclase deletion mutants. J Bacteriol 173, 3238–3242.
    [Google Scholar]
  37. Shenoy, A. R., Sreenath, N., Podobnik, M., Kovacevic, M. & Visweswariah, S. S. ( 2005; ). The Rv0805 gene from Mycobacterium tuberculosis encodes a 3′,5′-cyclic nucleotide phosphodiesterase: biochemical and mutational analysis. Biochemistry 44, 15695–15704.[CrossRef]
    [Google Scholar]
  38. Storz, G. & Imlay, J. A. ( 1999; ). Oxidative stress. Curr Opin Microbiol 2, 188–194.[CrossRef]
    [Google Scholar]
  39. Wai, S. N., Mizunoe, Y., Takade, A., Kawabata, S. I. & Yoshida, S. I. ( 1998; ). Vibrio cholerae O1 strain TSI-4 produces the exopolysaccharide materials that determine colony morphology, stress resistance, and biofilm formation. Appl Environ Microbiol 64, 3648–3655.
    [Google Scholar]
  40. Weber, H., Polen, T., Heuveling, J., Wendisch, V. F. & Hengge, R. ( 2005; ). Genome-wide analysis of the general stress response network in Escherichia coli: σ S-dependent genes, promoters, and sigma factor selectivity. J Bacteriol 187, 1591–1603.[CrossRef]
    [Google Scholar]
  41. Weber, A., Kogl, S. A. & Jung, K. ( 2006; ). Time-dependent proteome alterations under osmotic stress during aerobic and anaerobic growth in Escherichia coli. J Bacteriol 188, 7165–7175.[CrossRef]
    [Google Scholar]
  42. Winter, J., Linke, K., Jatzek, A. & Jakob, U. ( 2005; ). Severe oxidative stress causes inactivation of DnaK and activation of the redox-regulated chaperone Hsp33. Mol Cell 17, 381–392.[CrossRef]
    [Google Scholar]
  43. Winter, J., Ilbert, M., Graf, P. C., Özcelik, D. & Jakob, U. ( 2008; ). Bleach activates a redox-regulated chaperone by oxidative protein unfolding. Cell 135, 691–701.[CrossRef]
    [Google Scholar]
  44. Winterbourn, C. C., Hampton, M. B., Livesey, J. H. & Kettle, A. J. ( 2006; ). Modeling the reactions of superoxide and myeloperoxidase in the neutrophil phagosome: implications for microbial killing. J Biol Chem 281, 39860–39869.[CrossRef]
    [Google Scholar]
  45. Wolf, S. G., Frenkiel, D., Arad, T., Finkel, S. E., Kolter, R. & Minsky, A. ( 1999; ). DNA protection by stress-induced biocrystallization. Nature 400, 83–85.[CrossRef]
    [Google Scholar]
  46. Wolff, S. P. ( 1994; ). Ferrous ion oxidation in presence of ferric ion indicator xylenol orange for measurement of hydroperoxides. Methods Enzymol 233, 182–189.
    [Google Scholar]
  47. Zheng, M., Wang, X., Templeton, L. J., Smulski, D. R., LaRossa, R. A. & Storz, G. ( 2001; ). DNA microarray-mediated transcriptional profiling of the Escherichia coli response to hydrogen peroxide. J Bacteriol 183, 4562–4570.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.026021-0
Loading
/content/journal/micro/10.1099/mic.0.026021-0
Loading

Data & Media loading...

Supplements

[PDF file](170 KB)

PDF

[PDF file](70 KB)

PDF

[PDF file](271 KB)

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error