1887

Abstract

During pathogenesis, the ascomycete secretes a range of cell-wall-degrading enzymes such as polygalacturonases, glucanases and proteases. We report the identification of a new member of the G1 family of proteases, BcACP1, which is secreted by during infection. The production of BcACP1 correlates with the acidification of the plant tissue, and transcriptional analysis of the gene showed that it is only expressed under acidic growth conditions. Using a transcriptional reporter system, we showed that pH regulation of is not mediated by the canonical PacC transcription factor binding site. Like other G1 proteases, BcACP1 is produced as a pro-enzyme. Trapping of the zymogen form allowed investigation of its maturation process. Evidence is presented for an autocatalytic proteolysis of the enzyme that is triggered by acidic pH. Environmental pH therefore controls Bcacp1 production at both the transcriptional and post-translational level.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.025999-0
2009-06-01
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/6/2097.html?itemId=/content/journal/micro/10.1099/mic.0.025999-0&mimeType=html&fmt=ahah

References

  1. Antal, Z., Rascle, C., Fèvre, M. & Bruel, C. ( 2004; ). Single oligonucleotide nested PCR: a rapid method for the isolation of genes and their flanking regions from expressed sequence tags. Curr Genet 46, 240–246.[CrossRef]
    [Google Scholar]
  2. Billon-Grand, G., Poussereau, N. & Fèvre, M. ( 2002; ). The extracellular proteases secreted in vitro and in planta by the phytopathogenic fungus Sclerotinia sclerotiorum. J Phytopathol 150, 507–511.[CrossRef]
    [Google Scholar]
  3. Bindschedler, L. V., Sanchez, P., Dunn, S., Mikan, J., Thangavelu, M., Clarkson, J. M. & Cooper, R. M. ( 2003; ). Deletion of the SNP1 trypsin protease from Stagonospora nodorum reveals another major protease expressed during infection. Fungal Genet Biol 38, 43–53.[CrossRef]
    [Google Scholar]
  4. Bradford, M. M. ( 1976; ). A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72, 248–254.[CrossRef]
    [Google Scholar]
  5. Brito, N., Espino, J. J. & Gonzales, C. ( 2006; ). The endo-beta-1,4-xylanase Xyn11A is required for virulence in Botrytis cinerea. Mol Plant Microbe Interact 19, 25–32.[CrossRef]
    [Google Scholar]
  6. Caracuel, Z., Roncero, M. I., Espeso, E. A., Gonzáles-Verdejo, C. I., Garcia-Macera, F. I. & Di Pietro, A. ( 2003; ). The pH signaling transcription factor PacC controls virulence in the plant pathogen Fusarium oxysporum. Mol Microbiol 48, 765–779.[CrossRef]
    [Google Scholar]
  7. Carpita, N. C. & Gibeaut, D. M. ( 1993; ). Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. Plant J 3, 1–30.[CrossRef]
    [Google Scholar]
  8. Cotton, P., Kasza, Z., Bruel, C., Rascle, C. & Fèvre, M. ( 2003; ). Ambient pH controls the expression of endopolygalacturonase genes in the necrotrophic fungus Sclerotinia sclerotiorum. FEMS Microbiol Lett 227, 163–169.[CrossRef]
    [Google Scholar]
  9. Davis, D., Wilson, R. B. & Mitchell, A. P. ( 2000; ). RIM 101-dependent and independent pathways govern pH responses in Candida albicans. Mol Cell Biol 20, 971–978.[CrossRef]
    [Google Scholar]
  10. Elad, Y., Williamson, B., Tudzynski, P. & Delen, N. ( 2004; ). Botrytis spp. and diseases they cause in agricultural systems – an introduction. In Botrytis: Biology, Pathology and Control, pp. 1–6. Edited by Y. Elad, B. Williamson, P. Tudzynski & N. Delen. Dordrecht, The Netherlands: Kluwer.
  11. Espeso, E. A. & Arst, H. N., Jr ( 2000; ). On the mechanism by which alkaline pH prevents expression of an acid expressed gene. Mol Cell Biol 20, 3355–3363.[CrossRef]
    [Google Scholar]
  12. Gamborg, O. L., Miller, R. A. & Ojima, K. ( 1968; ). Nutrient requirement of suspension cultures of soybean root cells. Exp Cell Res 50, 151 [CrossRef]
    [Google Scholar]
  13. Huang, X. P., Yabuki, Y., Kojima, M., Inoue, H. & Takahashi, K. ( 2007; ). Activation profiles of the zymogen of aspergilloglutamic peptidase. Biol Chem 388, 129–133.
    [Google Scholar]
  14. Kataoka, Y., Takada, K., Oyama, H., Tsunemi, M., James, M. N. & Oda, K. ( 2005; ). Catalytic residues and substrate specificity of scytalidoglutamic peptidase, the first member of the equolisin family (G1) of peptidases. FEBS Lett 579, 2991–2994.[CrossRef]
    [Google Scholar]
  15. Kim, Y. T., Prusky, D. & Rollins, J. A. ( 2007; ). An activating mutation of the Sclerotinia sclerotiorum pac1 gene increases oxalic acid production at low pH but decreases virulence. Mol Plant Pathol 8, 611–622.[CrossRef]
    [Google Scholar]
  16. Magro, P., Marciano, P. & Di Lenna, P. ( 1984; ). Oxalic acid production and its role in pathogenesis of Sclerotinia sclerotiorum. FEMS Microbiol Lett 24, 9–12.[CrossRef]
    [Google Scholar]
  17. Maita, T., Nagata, S., Matsuda, G., Maruta, S., Oda, K., Murao, S. & Tsuru, D. ( 1984; ). Complete amino acid sequence of Scytalidium lignicolum acid protease B. J Biochem 95, 465–475.
    [Google Scholar]
  18. Manteau, S., Abouna, S., Lambert, B. & Legendre, L. ( 2003; ). Differential regulation by ambient pH of putative virulence factor secretion by the phytopathogenic fungus Botrytis cinerea. FEMS Microbiol Ecol 43, 359–366.[CrossRef]
    [Google Scholar]
  19. Marciano, P., Di Lenna, P. & Magro, P. ( 1983; ). Oxalic acid, cell wall degrading enzymes and pH in pathogenesis and their significance in the virulence of two Sclerotinia sclerotiorum isolates on sunflower. Physiol Mol Plant Pathol 22, 339–345.[CrossRef]
    [Google Scholar]
  20. Miyara, I., Shafran, H., Kramer Haimovich, H., Rollins, J., Sherman, A. & Prusky, D. ( 2008; ). Multi-factor regulation of pectate lyase secretion by Colletotrichum gloeosporiodes pathogenic on avocado fruits. Mol Plant Pathol 9, 281–291.[CrossRef]
    [Google Scholar]
  21. Movahedi, S. & Heale, J. B. ( 1990; ). The roles of aspartic protease and endo-pectin lyase enzymes in the primary stages of infection and pathogenesis of various host tissues by different isolates of Botrytis cinerea Pers. ex Pers. Physiol Mol Plant Pathol 36, 303–324.[CrossRef]
    [Google Scholar]
  22. Mullins, E. D., Chen, X., Romaine, P., Raina, R., Geiser, D. M. & Kang, S. ( 2001; ). Agrobacterium-mediated transformation of Fusarium oxysporium: an efficient tool for insertional mutagenesis and gene transfer. Phytopathology 91, 173–180.[CrossRef]
    [Google Scholar]
  23. Olivieri, F. P., Maldonado, S., Tonon, C. V. & Casalongué, C. A. ( 2004; ). Hydrolytic activities of Fusarium solani f.sp. eumartii associated with the infection process of potato tubers. J Phytopathol 152, 337–344.[CrossRef]
    [Google Scholar]
  24. Penalva, M. A. & Arst, H. N., Jr ( 2002; ). Regulation of gene expression by ambient pH in filamentous fungi and yeasts. Microbiol Mol Biol Rev 66, 426–446.[CrossRef]
    [Google Scholar]
  25. Pillai, B., Cherney, M. M., Hiraga, K., Takada, K., Oda, K. & James, M. N. ( 2007; ). Crystal structure of scytalidoglutamic peptidase with its first potent inhibitor provides insights into substrate specificity and catalysis. J Mol Biol 365, 343–361.[CrossRef]
    [Google Scholar]
  26. Poussereau, N., Creton, S., Billon-Grand, G., Rascle, C. & Fèvre, M. ( 2001; ). Regulation of acp1, encoding a non-aspartyl acid protease expressed during pathogenesis of Sclerotinia sclerotiorum. Microbiology 147, 717–726.
    [Google Scholar]
  27. Ramon, A. M. & Fonzi, W. A. ( 2003; ). Diverged binding specificity of Rim101p, the Candida albicans ortholog of PacC. Eukaryot Cell 2, 718–728.[CrossRef]
    [Google Scholar]
  28. Rauscher, M., Mendgen, K. & Deising, H. ( 1995; ). Extracellular proteases of the rust fungus Uromyces viciae-fabae. Exp Mycol 19, 26–34.[CrossRef]
    [Google Scholar]
  29. Rolland, S. G. & Bruel, C. A. ( 2008; ). Sulfur and nitrogen regulation of the protease-encoding ACP1 gene in the fungus Botrytis cinerea: correlation with a phospholipase D activity. Microbiology 154, 1464–1473.[CrossRef]
    [Google Scholar]
  30. Rolland, S., Jobic, C., Fèvre, M. & Bruel, C. ( 2003; ). Agrobacterium-mediated transformation of Botrytis cinerea, simple purification of monokaryotic transformants and rapid conidia-based identification of the transfer-DNA host genomic DNA flanking sequences. Curr Genet 44, 164–171.[CrossRef]
    [Google Scholar]
  31. Rollins, J. A. ( 2003; ). The Sclerotinia sclerotiorum pac1 gene is required for sclerotial development and virulence. Mol Plant Microbe Interact 16, 785–795.[CrossRef]
    [Google Scholar]
  32. Sambrook, J., Fritsch, E. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  33. Sarkar, S., Caddick, M. X., Bignell, E., Tilburn, J. & Arst, H. N., Jr ( 1996; ). Regulation of gene expression by ambient pH in Aspergillus: gene expressed at acid pH. Biochem Soc Trans 24, 360–363.
    [Google Scholar]
  34. Sims, A. H., Dunn-Coleman, N. S., Robson, G. D. & Oliver, S. G. ( 2004; ). Glutamic protease distribution is limited to filamentous fungi. FEMS Microbiol Lett 239, 95–101.[CrossRef]
    [Google Scholar]
  35. St Leger, R. J., Joshi, L. & Roberts, D. W. ( 1997; ). Adaptation of proteases and carbohydrases of saprophytic, phytopathogenic and entomopathogenic fungi to the requirements of their ecological niches. Microbiology 143, 1983–1992.[CrossRef]
    [Google Scholar]
  36. St Leger, R. J., Nelson, J. O. & Screen, S. E. ( 1999; ). The entomopathogenic fungus Metarhizium anisopliae alters ambient pH, allowing extracellular protease production and activity. Microbiology 145, 2691–2699.
    [Google Scholar]
  37. Takahashi, K., Inoue, H., Sakai, K., Kohama, T., Kitahara, S., Takishima, K. & Akanuma, H. ( 1991; ). The primary structure of Aspergillus niger acid proteinase A. J Biol Chem 266, 19480–19483.
    [Google Scholar]
  38. Ten Have, A., Dekkers, E., Kay, J., Phylip, L. H. & van Kan, J. A. L. ( 2004; ). An aspartic proteinase gene family in the filamentous fungus Botrytis cinerea contains members with novel features. Microbiology 150, 2475–2489.[CrossRef]
    [Google Scholar]
  39. Tilburn, J., Sarkar, S., Widdick, D., Espeso, E., Orejas, M., Mungroo, J., Penalva, M. & Arst, H. N., Jr ( 1995; ). The Aspergillus PacC zinc finger transcription factor mediates regulation of both acid- and alkaline expressed genes by ambient pH. EMBO J 14, 779–790.
    [Google Scholar]
  40. Verhoeff, K., Leeman, M., van Peer, R., Posthuma, L., Schot, N. & van Eijk, G. W. ( 1988; ). Changes in pH and the production of organic acids during colonization of tomato petioles by Botrytis cinerea. J Phytopathol 122, 327–336.[CrossRef]
    [Google Scholar]
  41. Verwoerd, T. C., Dekker, B. M. & Hoekema, A. ( 1989; ). A small-scale procedure for the rapid isolation of plant RNAs. Nucleic Acids Res 17, 2362 [CrossRef]
    [Google Scholar]
  42. You, B. J. & Chung, K. R. ( 2007; ). Phenotypic characterization of mutants of the citrus pathogen Colletotrichum acutatum defective in a PacC-mediated pH regulatory pathway. FEMS Microbiol Lett 277, 107–114.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.025999-0
Loading
/content/journal/micro/10.1099/mic.0.025999-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error