1887

Abstract

Several genes contained in the pathogenicity island (FPI) encode proteins needed for intracellular growth and virulence of . The gene is the first cistron in the larger of the two operons found in the FPI. In this work we studied the intracellular growth phenotype of a mutant in the gene. The Δ strain was capable of a small amount of intracellular replication but, unlike wild-type , remained associated with the lysosomal marker LAMP-1, suggesting that PdpA is necessary for progression from the early phagosome phase of infection. Strains with complementation of the Δ lesion showed a restoration of intracellular growth to wild-type levels. Infection of macrophages with the Δ mutant generated a host-cell mRNA profile distinct from that generated by infection with wild-type . The transcriptional response of the host macrophage indicates that PdpA functions directly or indirectly to suppress macrophage ability to signal via growth factors, cytokines and adhesion ligands.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.025445-0
2009-05-01
2020-01-26
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/5/1498.html?itemId=/content/journal/micro/10.1099/mic.0.025445-0&mimeType=html&fmt=ahah

References

  1. Andersson H., Hartmanova B., Kuolee R., Ryden P., Conlan W., Chen W., Sjostedt A.. 2006a; Transcriptional profiling of host responses in mouse lungs following aerosol infection with type A Francisella tularensis . J Med Microbiol55:263–271
    [Google Scholar]
  2. Andersson H., Hartmanova B., Ryden P., Noppa L., Naslund L., Sjostedt A.. 2006b; A microarray analysis of the murine macrophage response to infection with Francisella tularensis LVS. J Med Microbiol55:1023–1033
    [Google Scholar]
  3. Anthony L. D., Burke R. D., Nano F. E.. 1991; Growth of Francisella spp. in rodent macrophages. Infect Immun59:3291–3296
    [Google Scholar]
  4. Baron G. S., Nano F. E.. 1998; MglA and MglB are required for the intramacrophage growth of Francisella novicida . Mol Microbiol29:247–259
    [Google Scholar]
  5. Bingle L. E., Bailey C. M., Pallen M. J.. 2008; Type VI secretion: a beginner's guide. Curr Opin Microbiol11:3–8
    [Google Scholar]
  6. Bonquist L., Lindgren H., Golovliov I., Guina T., Sjostedt A.. 2008; The MglA and Igl proteins contribute to the modulation of Francisella tularensis LVS-containing phagosomes in murine macrophages. Infect Immun76:3502–3510
    [Google Scholar]
  7. Bosio C. M., Dow S. W.. 2005; Francisella tularensis induces aberrant activation of pulmonary dendritic cells. J Immunol175:6792–6801
    [Google Scholar]
  8. Butchar J. P., Cremer T. J., Clay C. D., Gavrilin M. A., Wewers M. D., Marsh C. B., Schlesinger L. S., Tridandapani S.. 2008; Microarray analysis of human monocytes infected with Francisella tularensis identifies new targets of host response subversion. PLoS One3:e2924
    [Google Scholar]
  9. Charity J. C., Costante-Hamm M. M., Balon E. L., Boyd D. H., Rubin E. J., Dove S. L.. 2007; Twin RNA polymerase-associated proteins control virulence gene expression in Francisella tularensis . PLoS Pathog3:e84
    [Google Scholar]
  10. Chong A., Wehrly T. D., Nair V., Fischer E. R., Barker J. R., Klose K. E., Celli J.. 2008; The early phagosomal stage of Francisella tularensis determines optimal phagosomal escape and Francisella pathogenicity island protein expression. Infect Immun76:5488–5499
    [Google Scholar]
  11. Clemens D. L., Lee B. Y., Horwitz M. A.. 2004; Virulent and avirulent strains of Francisella tularensis prevent acidification and maturation of their phagosomes and escape into the cytoplasm in human macrophages. Infect Immun72:3204–3217
    [Google Scholar]
  12. Conlan J. W., North R. J.. 1992; Early pathogenesis of infection in the liver with the facultative intracellular bacteria Listeria monocytogenes , Francisella tularensis , and Salmonella typhimurium involves lysis of infected hepatocytes by leukocytes. Infect Immun60:5164–5171
    [Google Scholar]
  13. de Bruin O. M., Ludu J. S., Nano F. E.. 2007; The Francisella pathogenicity island protein IglA localizes to the bacterial cytoplasm and is needed for intracellular growth. BMC Microbiol7:1
    [Google Scholar]
  14. Ellis J., Oyston P. C., Green M., Titball R. W.. 2002; Tularemia. Clin Microbiol Rev15:631–646
    [Google Scholar]
  15. Hall J. D., Craven R. R., Fuller J. R., Pickles R. J., Kawula T. H.. 2007; Francisella tularensis replicates within alveolar type II epithelial cells in vitro and in vivo following inhalation. Infect Immun75:1034–1039
    [Google Scholar]
  16. Lindgren H., Golovliov I., Baranov V., Ernst R. K., Telepnev M., Sjostedt A.. 2004; Factors affecting the escape of Francisella tularensis from the phagolysosome. J Med Microbiol53:953–958
    [Google Scholar]
  17. Ludu J. S., de Bruin O. M., Duplantis B. N., Schmerk C. L., Chou A. Y., Elkins K. L., Nano F. E.. 2008a; The Francisella pathogenicity island protein PdpD is required for full virulence and associates with homologues of the type VI secretion system. J Bacteriol190:4584–4595
    [Google Scholar]
  18. Ludu J. S., Nix E. B., Duplantis B. N., de Bruin O. M., Gallagher L. A., Hawley L. M., Nano F. E.. 2008b; Genetic elements for selection, deletion mutagenesis and complementation in Francisella spp. FEMS Microbiol Lett278:86–93
    [Google Scholar]
  19. Mohapatra N. P., Balagopal A., Soni S., Schlesinger L. S., Gunn J. S.. 2007a; AcpA is a Francisella acid phosphatase that affects intramacrophage survival and virulence. Infect Immun75:390–396
    [Google Scholar]
  20. Mohapatra N. P., Soni S., Bell B. L., Warren R., Ernst R. K., Muszynski A., Carlson R. W., Gunn J. S.. 2007b; Identification of an orphan response regulator required for the virulence of Francisella spp. and transcription of pathogenicity island genes. Infect Immun75:3305–3314
    [Google Scholar]
  21. Mohapatra N. P., Soni S., Reilly T. J., Liu J., Klose K. E., Gunn J. S.. 2008; The combined deletion of four Francisella acid phosphatases attenuates virulence and macrophage vacuolar escape. Infect Immun76:3690–3699
    [Google Scholar]
  22. Nano F. E.. 1988; Identification of a heat-modifiable protein of Francisella tularensis and molecular cloning of the encoding gene. Microb Pathog5:109–119
    [Google Scholar]
  23. Nano F. E., Zhang N., Cowley S. C., Klose K. E., Cheung K. K., Roberts M. J., Ludu J. S., Letendre G. W., Meierovics A. I.. other authors 2004; A Francisella tularensis pathogenicity island required for intramacrophage growth. J Bacteriol186:6430–6436
    [Google Scholar]
  24. Paranavitana C., Pittman P. R., Velauthapillai M., Zelazowska E., Dasilva L.. 2008; Transcriptional profiling of Francisella tularensis infected peripheral blood mononuclear cells: a predictive tool for tularemia. FEMS Immunol Med Microbiol54:92–103
    [Google Scholar]
  25. Reilly T. J., Baron G. S., Nano F. E., Kuhlenschmidt M. S.. 1996; Characterization and sequencing of a respiratory burst-inhibiting acid phosphatase from Francisella tularensis . J Biol Chem271:10973–10983
    [Google Scholar]
  26. Sammons-Jackson W. L., McClelland K., Manch-Citron J. N., Metzger D. W., Bakshi C. S., Garcia E., Rasley A., Anderson B. E.. 2008; Generation and characterization of an attenuated mutant in a response regulator gene of Francisella tularensis live vaccine strain (LVS. DNA Cell Biol27:387–403
    [Google Scholar]
  27. Santic M., Molmeret M., Abu Kwaik Y.. 2005a; Modulation of biogenesis of the Francisella tularensis subsp. novicida -containing phagosome in quiescent human macrophages and its maturation into a phagolysosome upon activation by IFN-gamma. Cell Microbiol7:957–967
    [Google Scholar]
  28. Santic M., Molmeret M., Klose K. E., Jones S., Kwaik Y. A.. 2005b; The Francisella tularensis pathogenicity island protein IglC and its regulator MglA are essential for modulating phagosome biogenesis and subsequent bacterial escape into the cytoplasm. Cell Microbiol7:969–979
    [Google Scholar]
  29. Santic M., Asare R., Skrobonja I., Jones S., Abu Kwaik Y.. 2008; Acquisition of the vacuolar ATPase proton pump and phagosome acidification are essential for escape of Francisella tularensis into the macrophage cytosol. Infect Immun76:2671–2677
    [Google Scholar]
  30. Schmerk C. L., Duplantis B. N., Wang D., Burke R. D., Chou A. Y., Elkins K. L., Ludu J. S., Nano F. E.. 2009; Characterization of the pathogenicity island protein PdpA and its role in the virulence of Francisella novicida . Microbiology155:1489–1497
    [Google Scholar]
  31. Weiss D. S., Brotcke A., Henry T., Margolis J. J., Chan K., Monack D. M.. 2007; In vivo negative selection screen identifies genes required for Francisella virulence. Proc Natl Acad Sci U S A104:6037–6042
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.025445-0
Loading
/content/journal/micro/10.1099/mic.0.025445-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error