1887

Abstract

is a major component of dairy starter cultures used for the manufacture of yoghurt and cheese. In this study, the CO metabolism of DSM 20617, grown in either a N atmosphere or an enriched CO atmosphere, was analysed using both genetic and proteomic approaches. Growth experiments performed in a chemically defined medium revealed that CO depletion resulted in bacterial arginine, aspartate and uracil auxotrophy. Moreover, CO depletion governed a significant change in cell morphology, and a high reduction in biomass production. A comparative proteomic analysis revealed that cells of showed a different degree of energy status depending on the CO availability. In agreement with proteomic data, cells grown under N showed a significantly higher milk acidification rate compared with those grown in an enriched CO atmosphere. Experiments carried out on wild-type and its derivative mutant, which was inactivated in the phosphoenolpyruvate carboxylase and carbamoyl-phosphate synthase activities responsible for fixing CO to organic molecules, suggested that the anaplerotic reactions governed by these enzymes have a central role in bacterial metabolism. Our results reveal the capnophilic nature of this micro-organism, underlining the essential role of CO in physiology, and suggesting potential applications in dairy fermentation processes.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.024737-0
2009-06-01
2019-08-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/6/1953.html?itemId=/content/journal/micro/10.1099/mic.0.024737-0&mimeType=html&fmt=ahah

References

  1. Altermann, E., Russell, W. M., Azcarate-Peril, M. A., Barrangou, R., Buck, B. L., McAuliffe, O., Souther, N., Dobson, A., Duong, T. & other authors ( 2005; ). Complete genome of the probiotic lactic acid bacterium Lactobacillus acidophilus NCFM. Proc Natl Acad Sci U S A 102, 3906–3912.[CrossRef]
    [Google Scholar]
  2. Arena, S., D'Ambrosio, C., Renzone, G., Rullo, R., Ledda, L., Vitale, F., Maglione, G., Varcamonti, M., Ferrara, L. & Scaloni, A. ( 2006; ). A study of Streptococcus thermophilus proteome by integrated analytical procedures and differential expression investigations. Proteomics 6, 181–192.[CrossRef]
    [Google Scholar]
  3. Arioli, S., Monnet, C., Guglielmetti, S., Parini, C., De Noni, I., Hogenboom, J., Halami, P. M. & Mora, D. ( 2007; ). Aspartate biosynthesis is essential for the growth of Streptococcus thermophilus in milk, and aspartate availability modulates the level of urease activity. Appl Environ Microbiol 73, 5789–5796.[CrossRef]
    [Google Scholar]
  4. Arsène-Ploetze, F., Kugler, V., Martinussen, J. & Bringel, F. ( 2006; ). Expression of the pyr operon of Lactobacillus plantarum is regulated by inorganic carbon availability through a second regulator, PyrR2, homologous to the pyrimidine-dependent regulator PyrR. J Bacteriol 188, 8607–8616.[CrossRef]
    [Google Scholar]
  5. Bernhardt, J., Weibezahn, J., Scharf, C. & Hecker, M. ( 2003; ). Bacillus subtilis during feast and famine: visualization of the overall regulation of protein synthesis during glucose starvation by proteome analysis. Genome Res 13, 224–237.[CrossRef]
    [Google Scholar]
  6. Biswas, I., Gruss, A., Ehrlich, D. & Maguin, E. ( 1993; ). High-efficiency gene inactivation and replacement system for Gram-positive bacteria. J Bacteriol 175, 3628–3635.
    [Google Scholar]
  7. Bolotin, A., Wincker, P., Mauger, S., Jaillon, O., Malarme, K., Weissanbach, J., Ehrlich, S. D. & Sorokin, A. ( 2001; ). The complete genome sequence of lactic acid bacterium Lactococcus lactis ssp. lactis IL1403. Genome Res 11, 731–753.[CrossRef]
    [Google Scholar]
  8. Bolotin, A., Quinquis, B., Renault, P., Sorokin, A., Ehrlich, S. D., Kulakauskas, S., Lapidus, A., Goltsman, E., Mazur, M. & other authors ( 2004; ). Complete sequence and comparative genome analysis of the dairy bacterium Streptococcus thermophilus. Nat Biotechnol 22, 1554–1558.[CrossRef]
    [Google Scholar]
  9. Bradford, M. M. ( 1976; ). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72, 248–254.[CrossRef]
    [Google Scholar]
  10. Callanan, M., Kaleta, P., O'Callaghan, J., O'Sullivan, O., Jordan, K., McAuliffe, O., Sangrador-Vegas, A., Slattery, L., Fitzgerald, G. F. & other authors ( 2008; ). Genome sequence of Lactobacillus helveticus: an organism distinguished by selective gene loss and insertion sequence element expansion. J Bacteriol 190, 727–735.[CrossRef]
    [Google Scholar]
  11. Chaillou, S., Champomier-Vergès, M. C., Cornet, M., Crutz-Le Coq, A. M., Dudez, A. M., Martin, S., Beaufils, S., Darbon-Rongère, E., Bossy, R. & other authors ( 2005; ). The complete genome sequence of the meat-borne lactic acid bacterium Lactobacillus sakei 23K. Nat Biotechnol 23, 1527–1533.[CrossRef]
    [Google Scholar]
  12. Claesson, M. J., Leahy, S., Canchaya, C., van Pijkeren, J. P., Cerdeño-Tárraga, A. M., Parkhill, J., Flynn, S., O'Sullivan, G. C., Collins, J. K. & other authors ( 2006; ). Multireplicon genome architecture of Lactobacillus salivarius. Proc Natl Acad Sci U S A 103, 6718–6723.[CrossRef]
    [Google Scholar]
  13. D'Ambrosio, C., Arena, S., Fulcoli, G., Scheinfeld, M. H., Zhou, D., D'Adamio, L. & Scaloni, A. ( 2006; ). Hyperphosphorylation of JNK-interacting protein 1, a protein associated with Alzheimer disease. Mol Cell Proteomics 5, 97–113.
    [Google Scholar]
  14. Eymann, C., Dreisbach, A., Albrecht, D., Bernhardt, J., Becher, D., Gentner, S., Tam le, T., Büttner, K., Buurman, G. & other authors ( 2004; ). A comprehensive proteome map of growing Bacillus subtilis cells. Proteomics 4, 2849–2876.[CrossRef]
    [Google Scholar]
  15. Garrigues, C., Loubiere, P., Lindley, D. & Cocaign-Bousquet, M. ( 1997; ). Control of the shift from homolactic acid to mixed-acid fermentation in Lactococcus lactis: predominant role of the NADH/NAD+ ratio. J Bacteriol 179, 5282–5287.
    [Google Scholar]
  16. Gaspar, P., Neves, A. R., Shearman, C. A., Gasson, M. J., Baptista, A. M., Turner, D. L., Soares, C. M. & Santos, H. ( 2007; ). The lactate dehydrogenases encoded by the ldh and ldhB genes in Lactococcus lactis exibits distinct regulation and catalytic properties – comparative modelling to probe the molecular basis. FEBS J 274, 5924–5936.[CrossRef]
    [Google Scholar]
  17. Giliberti, G., Naclerio, G., Martirani, L., Ricca, E. & De Felice, M. ( 2002; ). Alteration of cell morphology and viability in a recA mutant of Streptococcus thermophilus upon induction of heat shock and nutrient starvation. Gene 295, 1–6.[CrossRef]
    [Google Scholar]
  18. Gunnewijk, M. G. W. & Poolman, B. ( 2000a; ). Phosphorylation state of HPr determines the level of expression and the extent of phosphorylation of the lactose transport protein of Streptococcus thermophilus. J Biol Chem 275, 34073–34079.[CrossRef]
    [Google Scholar]
  19. Gunnewijk, M. G. W. & Poolman, B. ( 2000b; ). HPr(His-P)-mediated phosphorylation differently affects counterflow and proton motive force-driven uptake via the lactose transport protein of Streptococcus thermophilus. J Biol Chem 275, 34080–34085.[CrossRef]
    [Google Scholar]
  20. Hols, P., Hancy, F., Fontaine, L., Grossiord, B., Prozzi, D., Leblond-Bourget, N., Decaris, B., Bolotin, A., Delorme, C. & other authors ( 2005; ). New insights in the molecular biology and physiology of Streptococcus thermophilus revealed by comparative genomics. FEMS Microbiol Rev 29, 435–463.
    [Google Scholar]
  21. Kleerebezem, M., Boekhorst, J., van Kranenburg, R., Molenaar, D., Kuipers, O., Leer, R., Tarchini, R., Peters, S., Sandbrink, H. M. & other authors ( 2003; ). Complete genome sequence of Lactobacillus plantarum WCFS1. Proc Natl Acad Sci U S A 100, 1990–1995.[CrossRef]
    [Google Scholar]
  22. Link, A. J., Eng, J. K., Schieltz, D. M., Carmack, E., Mize, G. J., Morris, D. R., Garvik, B. M. & Yates, J. R., III ( 1999; ). Direct analysis of protein complexes using mass spectrometry. Nat Biotechnol 17, 676–682.[CrossRef]
    [Google Scholar]
  23. Louaileche, H., Braquart, P., Saulnier, F., Desmazeud, M. & Linden, G. ( 1993; ). Carbon dioxide effects on the growth and metabolites of morphological variants of Streptococcus thermophilus. J Dairy Sci 76, 3683–3689.[CrossRef]
    [Google Scholar]
  24. Louaileche, H., Bracquart, P., Guimont, C. & Linden, G. ( 1996; ). Carbon dioxide fixation by cells and cell-free extracts of Streptococcus thermophilus. J Dairy Res 63, 321–325.[CrossRef]
    [Google Scholar]
  25. MacCoss, M. J., Wu, C. C. & Yates, J. R., III ( 2002; ). Probability based validation of protein identifications using a modified sequest algorithm. Anal Chem 74, 5593–5599.[CrossRef]
    [Google Scholar]
  26. Makarova, K., Slesarev, A., Wolf, Y., Sorokin, A., Mirkin, B., Koonin, E., Pavolv, A., Pavlova, N., Karamychev, V. & other authors ( 2006; ). Comparative genomics of the lactic acid bacteria. Proc Natl Acad Sci U S A 103, 15611–15616.[CrossRef]
    [Google Scholar]
  27. Manachini, P. L., Fortina, M. G., Parini, C. & Craveri, R. ( 1985; ). Bacillus thermoruber sp. nov., nom. rev., a red pigmented thermophilic bacterium. Int J Syst Bacteriol 35, 493–496.[CrossRef]
    [Google Scholar]
  28. Mastro, R. & Hall, M. ( 1999; ). Protein delipidation and precipitation by tri-n-butylphosphate, acetone, and methanol treatment for isoelectric focusing and two-dimensional gel electrophoresis. Anal Biochem 273, 313–315.[CrossRef]
    [Google Scholar]
  29. Mora, D., Maguin, E., Masiero, M., Ricci, G., Parini, C., Manachini, P. L. & Daffonchio, D. ( 2004; ). Characterization of urease genes cluster of Streptococcus thermophilus. J Appl Microbiol 96, 209–219.[CrossRef]
    [Google Scholar]
  30. Mora, D., Monnet, C., Parini, C., Guglielmetti, S., Mariani, A., Pintus, P., Molinari, F., Daffonchio, D. & Manachini, P. L. ( 2005; ). Urease biogenesis in Streptococcus thermophilus. Res Microbiol 156, 897–903.[CrossRef]
    [Google Scholar]
  31. Morita, H., Toh, H., Fukuda, S., Horikawa, H., Oshima, K., Suzuki, T., Murakami, M., Hisamatsu, S., Kato, Y. & other authors ( 2008; ). Comparative genome analysis of Lactobacillus reuteri and Lactobacillus fermentum reveal a genomic island for reuterin and cobolamin production. DNA Res 15, 151–161.[CrossRef]
    [Google Scholar]
  32. Nicoloff, H., Hubert, J.-C. & Bringel, F. ( 2000; ). In Lactobacillus plantarum, carbamoyl phosphate is synthesized by two carbamoyl-phosphate synthetases (CPS): carbon dioxide differentiates the arginine-repressed from the pyrimidine-regulated CPS. J Bacteriol 182, 3416–3422.[CrossRef]
    [Google Scholar]
  33. Nicoloff, H., Elagöz, A., Arsène-Ploetze, F., Kammerer, B., Martinussen, J. & Bringel, F. ( 2005; ). Repression of the pyr operon in Lactobacillus plantarum prevents its ability to grow at low carbon dioxide levels. J Bacteriol 187, 2093–2104.[CrossRef]
    [Google Scholar]
  34. Palmfeldt, J., Levander, F., Hahn-Hägerdal, B. & Peter, J. ( 2004; ). Acidic proteome of growing and resting Lactococcus lactis metabolizing maltose. Proteomics 4, 3881–3898.[CrossRef]
    [Google Scholar]
  35. Peng, J., Elias, J. E., Thoreen, C. C., Licklider, L. J. & Gygi, S. P. ( 2003; ). Evaluation of multidimensional chromatography coupled with tandem mass spectrometry (LC/LC-MS/MS) for large-scale protein analysis: the yeast proteome. J Proteome Res 2, 43–50.[CrossRef]
    [Google Scholar]
  36. Perkins, D. N., Pappin, D. J., Creasy, D. M. & Cottrell, J. S. ( 1999; ). Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20, 3551–3567.[CrossRef]
    [Google Scholar]
  37. Pridmore, R. D., Berger, B., Desiere, F., Vilanova, D., Barretto, C., Pittet, A. C., Zwahlen, M. C., Rouvet, M., Altermann, E. & other authors ( 2004; ). The genome sequence of the probiotic intestinal bacterium Lactobacillus johnsonii NCC 533. 2004. Proc Natl Acad Sci U S A 101, 2512–2517.[CrossRef]
    [Google Scholar]
  38. Reiter, B. & Oram, J. D. ( 1962; ). Nutritional studies on cheese starters. I. Vitamin and amino acid requirements of single strain starters. J Dairy Res 29, 63–77.
    [Google Scholar]
  39. Rocco, M., D'Ambrosio, C., Arena, S., Faurobert, M., Scaloni, A. & Marra, R. ( 2006; ). Proteomic analysis of tomato fruits from two ecotypes during ripening. Proteomics 6, 3781–3791.[CrossRef]
    [Google Scholar]
  40. Salzano, A. M., Arena, S., Tenzone, G., D'Ambrosio, C., Rullo, R., Bruschi, M., Ledda, L., Maglione, G., Candiano, G. & other authors ( 2007; ). A widespread picture of the Streptococcus thermophilus proteome by cell lysate fractionation and gel-based/gel-free approaches. Proteomics 7, 1420–1433.[CrossRef]
    [Google Scholar]
  41. Sciochetti, S. A., Blakely, G. W. & Piggot, P. J. ( 2001; ). Growth phase variation in cell and nucleoid morphology in a Bacillus subtilis recA mutant. J Bacteriol 183, 2963–2968.[CrossRef]
    [Google Scholar]
  42. Talamo, F., D'Ambrosio, C., Arena, S., Del Vecchio, P., Ledda, L., Zehender, G., Ferrara, L. & Scaloni, A. ( 2003; ). Proteins from bovine tissues and biological fluids: defining a reference electrophoresis map for liver, kidney, muscle, plasma and red blood cells. Proteomics 3, 440–460.[CrossRef]
    [Google Scholar]
  43. Van de Guchte, M., Penaud, S., Grimaldi, C., Berbe, V., Bryson, K., Nicolas, P., Robert, C., Oztas, S., Mangenot, S. & other authors ( 2006; ). The complete genome sequence of Lactobacillus bulgaricus reveals extensive and ongoing reductive evolution. Proc Natl Acad Sci U S A 103, 9274–9279.[CrossRef]
    [Google Scholar]
  44. van den Bogaard, P. T., Kleerebezem, M., Kuipers, O. P. & de Vos, W. M. ( 2000; ). Control of lactose transport, β-galactosidase activity, and glycolysis by CcpA in Streptococcus thermophilus: evidence for carbon catabolite repression by a non-phosphoenolpyruvate-dependent phosphotransferase system sugar. J Bacteriol 182, 5982–5989.[CrossRef]
    [Google Scholar]
  45. Wang, H., Weizhu, Y., Coolbear, T., O'Sullivan, D. & McKay, L. L. ( 1998; ). A deficiency in aspartate biosynthesis in Lactococcus lactis subsp. lactis C2 causes slow milk coagulation. Appl Environ Microbiol 64, 1673–1679.
    [Google Scholar]
  46. Wang, H., O'Sullivan, D. J., Baldwin, K. A. & McKay, L. L. ( 2000; ). Cloning, sequencing, and expression of the pyruvate carboxylase gene in Lactococcus lactis subsp. lactis C2. Appl Environ Microbiol 66, 1223–1227.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.024737-0
Loading
/content/journal/micro/10.1099/mic.0.024737-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error