1887

Abstract

cells were grown at 26 and 37 °C, the ambient temperatures of its flea vector and its mammalian hosts, respectively, and subjected to subcellular fractionation. Abundance changes at 26 vs 37 °C were observed for many outer-membrane (OM) proteins. The cell adhesion protein Ail (y1324) and three putative small -barrel OM proteins (y1795, y2167 and y4083) were strongly increased at 37 °C. The Ail/Lom family protein y1682 (OmpX) was strongly increased at 26 °C. Several porins and TonB-dependent receptors, which control small molecule transport through the OM, were also altered in abundance in a temperature-dependent manner. These marked differences in the composition of the OM proteome are probably important for the adaptation of to its life stages. Thirteen proteins that appear to be part of an intact type VI secretion system (T6SS) were identified in membrane fractions of stationary-phase cells grown at 26 °C, but not at 37 °C. The corresponding genes are clustered in the KIM gene locus y3658–y3677. The proteins y3674 and y3675 were particularly abundant and co-fractionated in a range indicative of participation in a multi-subunit complex. The soluble haemolysin-coregulated protein y3673 was even more abundant. Its release into the extracellular medium was triggered by treatment of cells with trypsin. Proteases and other stress-response-inducing factors may constitute environmental cues resulting in the activation of the T6SS in .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.022160-0
2009-02-01
2020-08-03
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/2/498.html?itemId=/content/journal/micro/10.1099/mic.0.022160-0&mimeType=html&fmt=ahah

References

  1. Anisimov A. P., Lindler L. E., Pier G. B.. 2004; Intraspecific diversity of Yersinia pestis . Clin Microbiol Rev17:434–464
    [Google Scholar]
  2. Bagos P. G., Liakopoulos T. D., Spyropoulos I. C., Hamodrakas S. J.. 2004; PRED-TMBB: a web server for predicting the topology of beta-barrel outer membrane proteins. Nucleic Acids Res32:W400–W404
    [Google Scholar]
  3. Bartra S. S., Styer K. L., O'Bryant D. M., Nilles M. L., Hinnebusch B. J., Aballay A., Plano G. V.. 2008; Resistance of Yersinia pestis to complement-dependent killing is mediated by the Ail outer membrane protein. Infect Immun76:612–622
    [Google Scholar]
  4. Begic S., Worobec E. A.. 2006; Regulation of Serratia marcescens ompF and ompC porin genes in response to osmotic stress, salicylate, temperature and pH. Microbiology152:485–491
    [Google Scholar]
  5. Bingle L. E., Bailey C. M., Pallen M. J.. 2008; Type VI secretion: a beginner's guide. Curr Opin Microbiol11:3–8
    [Google Scholar]
  6. Black P. N., Said B., Ghosn C. R., Beach J. V., Nunn W. D.. 1987; Purification and characterization of an outer membrane-bound protein involved in long-chain fatty acid transport in Escherichia coli . J Biol Chem262:1412–1419
    [Google Scholar]
  7. Bobrov A. G., Bearden S. W., Fetherston J. D., Khweek A. A., Parrish K. D., Perry R. D.. 2007; Functional quorum sensing systems affect biofilm formation and protein expression in Yersinia pestis . Adv Exp Med Biol603:178–191
    [Google Scholar]
  8. Brubaker R. R.. 2002; Yersinia pestis . In Molecular Medical Microbiology pp2033–2058 Edited by Sussman M.. London, UK: Academic Press;
  9. Chain P. S., Hu P., Malfatti S. A., Radnedge L., Larimer F., Vergez L. M., Worsham P., Chu M. C., Andersen G. L.. 2006; Complete genome sequence of Yersinia pestis strains Antiqua and Nepal516: evidence of gene reduction in an emerging pathogen. J Bacteriol188:4453–4463
    [Google Scholar]
  10. Chauvaux S., Rosso M. L., Frangeul L., Lacroix C., Labarre L., Schiavo A., Marceau M., Dillies M. A., Foulon J.. other authors 2007; Transcriptome analysis of Yersinia pestis in human plasma: an approach for discovering bacterial genes involved in septicaemic plague. Microbiology153:3112–3124
    [Google Scholar]
  11. Chromy B. A., Choi M. W., Murphy G. A., Gonzales A. D., Corzett C. H., Chang B. C., Fitch J. P., McCutchen-Maloney S. L.. 2005; Proteomic characterization of Yersinia pestis virulence. J Bacteriol187:8172–8180
    [Google Scholar]
  12. Cornelis G. R.. 2002; Yersinia type III secretion: send in the effectors. J Cell Biol158:401–408
    [Google Scholar]
  13. Davis K. J., Fritz D. L., Pitt M. L., Welkos S. L., Worsham P. L., Friedlander A. M.. 1996; Pathology of experimental pneumonic plague produced by fraction 1-positive and fraction 1-negative Yersinia pestis in African green monkeys ( Cercopithecus aethiops . Arch Pathol Lab Med120:156–163
    [Google Scholar]
  14. Deng W., Burland V., Plunkett G. III, Boutin A., Mayhew G. F., Liss P., Perna N. T., Rose D. J., Mau B.. other authors 2002; Genome sequence of Yersinia pestis KIM. J Bacteriol184:4601–4611
    [Google Scholar]
  15. Dudley E. G., Thomson N. R., Parkhill J., Morin N. P., Nataro J. P.. 2006; Proteomic and microarray characterization of the AggR regulon identifies a pheU pathogenicity island in enteroaggregative Escherichia coli . Mol Microbiol61:1267–1282
    [Google Scholar]
  16. Fetherston J. D., Perry R. D.. 1994; The pigmentation locus of Yersinia pestis KIM6+ is flanked by an insertion sequence and includes the structural genes for pesticin sensitivity and HMWP2. Mol Microbiol13:697–708
    [Google Scholar]
  17. Fetherston J. D., Schuetze P., Perry R. D.. 1992; Loss of the pigmentation phenotype in Yersinia pestis is due to the spontaneous deletion of 102 kb of chromosomal DNA which is flanked by a repetitive element. Mol Microbiol6:2693–2704
    [Google Scholar]
  18. Gatlin C. L., Pieper R., Huang S. T., Mongodin E., Gebregeorgis E., Parmar P. P., Clark D. J., Alami H., Papazisi L.. other authors 2006; Proteomic profiling of cell envelope-associated proteins from Staphylococcus aureus . Proteomics6:1530–1549
    [Google Scholar]
  19. Han Y., Zhou D., Pang X., Song Y., Zhang L., Bao J., Tong Z., Wang J., Guo Z.. other authors 2004; Microarray analysis of temperature-induced transcriptome of Yersinia pestis . Microbiol Immunol48:791–805
    [Google Scholar]
  20. Hinnebusch B. J.. 2004; The evolution of flea-borne transmission of Yersinia pestis . . In Yersinia Molecular and Cellular Biology pp49–73 Edited by Carniel E., Hinnebusch B. J.. Wymondham, Norfolk, UK: Horizon Bioscience;
  21. Hinnebusch B. J., Perry R. D., Schwan T. G.. 1996; Role of the Yersinia pestis hemin storage ( hms ) locus in the transmission of plague by fleas. Science273:367–370
    [Google Scholar]
  22. Hinnebusch J., Cherepanov P., Du Y., Rudolph A., Dixon J. D., Schwan T., Forsberg A.. 2000; Murine toxin of Yersinia pestis shows phospholipase D activity but is not required for virulence in mice. Int J Med Microbiol290:483–487
    [Google Scholar]
  23. Hinnebusch B. J., Rudolph A. E., Cherepanov P., Dixon J. E., Schwan T. G., Forsberg A.. 2002; Role of Yersinia murine toxin in survival of Yersinia pestis in the midgut of the flea vector. Science296:733–735
    [Google Scholar]
  24. Hixson K. K., Adkins J. N., Baker S. E., Moore R. J., Chromy B. A., Smith R. D., McCutchen-Maloney S. L., Lipton M. S.. 2006; Biomarker candidate identification in Yersinia pestis using organism-wide semiquantitative proteomics. J Proteome Res5:3008–3017
    [Google Scholar]
  25. Hong L., Elbl T., Ward J., Franzini-Armstrong C., Rybicka K. K., Gatewood B. K., Baillie D. L., Bucher E. A.. 2001; MUP-4 is a novel transmembrane protein with functions in epithelial cell adhesion in Caenorhabditis elegans . J Cell Biol154:403–414
    [Google Scholar]
  26. Horvath I., Multhoff G., Sonnleitner A., Vigh L.. 2008; Membrane-associated stress proteins: more than simply chaperones. Biochim Biophys Acta 1778;1653–1664
    [Google Scholar]
  27. Hu P., Elliott J., McCready P., Skowronski E., Garnes J., Kobayashi A., Brubaker R. R., Garcia E.. 1998; Structural organization of virulence-associated plasmids of Yersinia pestis . J Bacteriol180:5192–5202
    [Google Scholar]
  28. Jarrett C. O., Deak E., Isherwood K. E., Oyston P. C., Fischer E. R., Whitney A. R., Kobayashi S. D., DeLeo F. R., Hinnebusch B. J.. 2004; Transmission of Yersinia pestis from an infectious biofilm in the flea vector. J Infect Dis190:783–792
    [Google Scholar]
  29. Kolodziejek A. M., Sinclair D. J., Seo K. S., Schnider D. R., Deobald C. F., Rohde H. N., Viall A. K., Minnich S. S., Hovde C. J.. other authors 2007; Phenotypic characterization of OmpX, an Ail homologue of Yersinia pestis KIM. Microbiology153:2941–2951
    [Google Scholar]
  30. Lillard J. W. Jr, Bearden S. W., Fetherston J. D., Perry R. D.. 1999; The haemin storage (Hms+) phenotype of Yersinia pestis is not essential for the pathogenesis of bubonic plague in mammals. Microbiology145:197–209
    [Google Scholar]
  31. Lindler L. E., Plano G. V., Burland V., Mayhew G. F., Blattner F. R.. 1998; Complete DNA sequence and detailed analysis of the Yersinia pestis KIM5 plasmid encoding murine toxin and capsular antigen. Infect Immun66:5731–5742
    [Google Scholar]
  32. Liu H., Coulthurst S. J., Pritchard L., Hedley P. E., Ravensdale M., Humphris S., Burr T., Takle G., Brurberg M. B.. other authors 2008; Quorum sensing coordinates brute force and stealth modes of infection in the plant pathogen Pectobacterium atrosepticum . PLoS Pathog4:e1000093
    [Google Scholar]
  33. Lucier T. S., Fetherston J. D., Brubaker R. R., Perry R. D.. 1996; Iron uptake and iron-repressible polypeptides in Yersinia pestis . Infect Immun64:3023–3031
    [Google Scholar]
  34. Miller M. B., Bassler B. L.. 2001; Quorum sensing in bacteria. Annu Rev Microbiol55:165–199
    [Google Scholar]
  35. Molloy M. P.. 2008; Isolation of bacterial cell membranes proteins using carbonate extraction. Methods Mol Biol424:397–401
    [Google Scholar]
  36. Motin V. L., Georgescu A. M., Fitch J. P., Gu P. P., Nelson D. O., Mabery S. L., Garnham J. B., Sokhansanj B. A., Ott L. L.. other authors 2004; Temporal global changes in gene expression during temperature transition in Yersinia pestis . J Bacteriol186:6298–6305
    [Google Scholar]
  37. Mougous J. D., Cuff M. E., Raunser S., Shen A., Zhou M., Gifford C. A., Goodman A. L., Joachimiak G., Ordonez C. L.. other authors 2006; A virulence locus of Pseudomonas aeruginosa encodes a protein secretion apparatus. Science312:1526–1530
    [Google Scholar]
  38. Mougous J. D., Gifford C. A., Ramsdell T. L., Mekalanos J. J.. 2007; Threonine phosphorylation post-translationally regulates protein secretion in Pseudomonas aeruginosa . Nat Cell Biol9:797–803
    [Google Scholar]
  39. Myers-Morales T., Cowan C., Gray M. E., Wulff C. R., Parker C. E., Borchers C. H., Straley S. C.. 2007; A surface-focused biotinylation procedure identifies the Yersinia pestis catalase KatY as a membrane-associated but non-surface-located protein. Appl Environ Microbiol73:5750–5759
    [Google Scholar]
  40. Nano F. E., Zhang N., Cowley S. C., Klose K. E., Cheung K. K., Roberts M. J., Ludu J. S., Letendre G. W., Meierovics A. I.. other authors 2004; A Francisella tularensis pathogenicity island required for intramacrophage growth. J Bacteriol186:6430–6436
    [Google Scholar]
  41. Parkhill J., Wren B. W., Thomson N. R., Titball R. W., Holden M. T., Prentice M. B., Sebaihia M., James K. D., Churcher C.. other authors 2001; Genome sequence of Yersinia pestis , the causative agent of plague. Nature413:523–527
    [Google Scholar]
  42. Parsons D. A., Heffron F.. 2005; sciS , an icmF homolog in Salmonella enterica serovar Typhimurium, limits intracellular replication and decreases virulence. Infect Immun73:4338–4345
    [Google Scholar]
  43. Perry R. D., Fetherston J. D.. 1997; Yersinia pestis – etiologic agent of plague. Clin Microbiol Rev10:35–66
    [Google Scholar]
  44. Perry R. D., Fetherston J. D.. 2004; Iron and heme uptake systems. In Yersinia Molecular and Cellular Biology pp257–283 Edited by Carniel E., Hinnebusch B. J. Wymondham, Norfolk, UK: Horizon Bioscience;
  45. Perry R. D., Bobrov A. G., Kirillina O., Jones H. A., Pedersen L., Abney J., Fetherston J. D.. 2004; Temperature regulation of the hemin storage (Hms+) phenotype of Yersinia pestis is posttranscriptional. J Bacteriol186:1638–1647
    [Google Scholar]
  46. Pieper R., Huang S. T., Clark D. J., Robinson J. M., Parmar P. P., Alami H., Bunai C. L., Perry R. D., Fleischmann R. D., Peterson S. N.. 2008; Characterizing the dynamic nature of the Yersinia pestis periplasmic proteome in response to nutrient exhaustion and temperature change. Proteomics8:1442–1458
    [Google Scholar]
  47. Pratt L. A., Hsing W., Gibson K. E., Silhavy T. J.. 1996; From acids to osmZ : multiple factors influence synthesis of the OmpF and OmpC porins in Escherichia coli . Mol Microbiol20:911–917
    [Google Scholar]
  48. Pukatzki S., Ma A. T., Sturtevant D., Krastins B., Sarracino D., Nelson W. C., Heidelberg J. F., Mekalanos J. J.. 2006; Identification of a conserved bacterial protein secretion system in Vibrio cholerae using the Dictyostelium host model system. Proc Natl Acad Sci U S A103:1528–1533
    [Google Scholar]
  49. Pukatzki S., Ma A. T., Revel A. T., Sturtevant D., Mekalanos J. J.. 2007; Type VI secretion system translocates a phage tail spike-like protein into target cells where it cross-links actin. Proc Natl Acad Sci U S A104:15508–15513
    [Google Scholar]
  50. Rao P. S., Yamada Y., Tan Y. P., Leung K. Y.. 2004; Use of proteomics to identify novel virulence determinants that are required for Edwardsiella tarda pathogenesis. Mol Microbiol53:573–586
    [Google Scholar]
  51. Schell M. A., Ulrich R. L., Ribot W. J., Brueggemann E. E., Hines H. B., Chen D., Lipscomb L., Kim H. S., Mrazek J.. other authors 2007; Type VI secretion is a major virulence determinant in Burkholderia mallei . Mol Microbiol64:1466–1485
    [Google Scholar]
  52. Sodeinde O. A., Subrahmanyam Y. V., Stark K., Quan T., Bao Y., Goguen J. D.. 1992; A surface protease and the invasive character of plague. Science258:1004–1007
    [Google Scholar]
  53. Song Y., Tong Z., Wang J., Wang L., Guo Z., Han Y., Zhang J., Pei D., Zhou D.. other authors 2004; Complete genome sequence of Yersinia pestis strain 91001, an isolate avirulent to humans. DNA Res11:179–197
    [Google Scholar]
  54. Vollmer W., von Rechenberg M., Holtje J. V.. 1999; Demonstration of molecular interactions between the murein polymerase PBP1B, the lytic transglycosylase MltA, and the scaffolding protein MipA of Escherichia coli . J Biol Chem274:6726–6734
    [Google Scholar]
  55. Williams S. G., Varcoe L. T., Attridge S. R., Manning P. A.. 1996; Vibrio cholerae Hcp, a secreted protein coregulated with HlyA. Infect Immun64:283–289
    [Google Scholar]
  56. Wren B. W.. 2003; The yersiniae – a model genus to study the rapid evolution of bacterial pathogens. Nat Rev Microbiol1:55–64
    [Google Scholar]
  57. Yoshida T., Qin L., Egger L. A., Inouye M.. 2006; Transcription regulation of ompF and ompC by a single transcription factor, OmpR. J Biol Chem281:17114–17123
    [Google Scholar]
  58. Zavialov A. V., Berglund J., Pudney A. F., Fooks L. J., Ibrahim T. M., MacIntyre S., Knight S. D.. 2003; Structure and biogenesis of the capsular F1 antigen from Yersinia pestis : preserved folding energy drives fiber formation. Cell113:587–596
    [Google Scholar]
  59. Zheng J., Leung K. Y.. 2007; Dissection of a type VI secretion system in Edwardsiella tarda . Mol Microbiol66:1192–1206
    [Google Scholar]
  60. Zhou D., Han Y., Song Y., Huang P., Yang R.. 2004a; Comparative and evolutionary genomics of Yersinia pestis . Microbes Infect6:1226–1234
    [Google Scholar]
  61. Zhou D., Tong Z., Song Y., Han Y., Pei D., Pang X., Zhai J., Li M., Cui B.. other authors 2004b; Genetics of metabolic variations between Yersinia pestis biovars and the proposal of a new biovar, microtus. J Bacteriol186:5147–5152
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.022160-0
Loading
/content/journal/micro/10.1099/mic.0.022160-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error