1887

Abstract

is an entomopathogenic fungus with the potential to be used as an insect biological control agent. To better understand the mechanisms used by to infect different hosts, we generated expressed sequence tag (EST) datasets from a strain originally isolated from , and an isogenic strain passaged through . In total, 1839 ESTs were generated which clustered into 466 contigs and 433 singletons to provide a set of 899 unique sequences. Approximately 85 % of the ESTs were significantly similar (≤e) to other fungal genes, of which 69.6 % encoded proteins with a reported function. Proteins involved in protein synthesis and metabolism were encoded by 38.3 % of the ESTs, while 26.3 % encoded proteins involved in cell-cycle regulation, DNA synthesis, protein fate, transport, cell defence, transcription and RNA synthesis, and 4.9 % encoded proteins associated with cellular transport, signal transduction, control of cellular organization and cell-wall degradation. Several proteinases, including aspartic proteinases, trypsins, trypsin-like serine proteases and metalloproteases, with the potential to degrade insect cuticle were expressed by the two isolates.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.022103-0
2009-01-01
2019-10-17
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/1/174.html?itemId=/content/journal/micro/10.1099/mic.0.022103-0&mimeType=html&fmt=ahah

References

  1. Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W. & Lipman, D. J. ( 1997; ). Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25, 3389–3402.[CrossRef]
    [Google Scholar]
  2. Bagga, S., Hu, G., Screen, S. E. & St Leger, R. J. ( 2004; ). Reconstructing the diversification of subtilisins in the pathogenic fungus Metarhizium anisopliae. Gene 324, 159–169.[CrossRef]
    [Google Scholar]
  3. Brown, D. W., Cheung, F., Proctor, R. H., Butchko, R. A., Zheng, L., Lee, Y., Utterback, T., Smith, S., Feldblyum, T. & other authors ( 2005; ). Comparative analysis of 87,000 expressed sequence tags from the fumonisin-producing fungus Fusarium verticillioides. Fungal Genet Biol 42, 848–861.[CrossRef]
    [Google Scholar]
  4. Brownbridge, M., Costa, S. & Jaronski, S. T. ( 2001; ). Effects of in vitro passage of Beauveria bassiana on virulence to Bemisia argentifolii. J Invertebr Pathol 77, 280–283.[CrossRef]
    [Google Scholar]
  5. Cho, E. M., Liu, L., Farmerie, W. & Keyhani, N. O. ( 2006a; ). EST analysis of cDNA libraries from the entomopathogenic fungus Beauveria (Cordyceps) bassiana. I. Evidence for stage-specific gene expression in aerial conidia, in vitro blastospores and submerged conidia. Microbiology 152, 2843–2854.[CrossRef]
    [Google Scholar]
  6. Cho, E. M., Boucias, D. & Keyhani, N. O. ( 2006b; ). EST analysis of cDNA libraries from the entomopathogenic fungus Beauveria (Cordyceps) bassiana. II. Fungal cells sporulating on chitin and producing oosporein. Microbiology 152, 2855–2864.[CrossRef]
    [Google Scholar]
  7. Da Silva, S. P., Borges-Walmsley, M. I., Pereira, I. S., Soares, C. M. A., Walmsley, A. R. & Felipe, M. S. S. ( 1999; ). Differential expression of an hsp70 gene during transition from the mycelial to the infective yeast form of the human pathogenic fungus Paracoccidioides brasiliensis. Mol Microbiol 31, 1039–1050.[CrossRef]
    [Google Scholar]
  8. Ebbole, D. J., Jin, Y., Thon, M., Pan, H., Bhattarai, E., Thomas, T. & Dean, R. ( 2004; ). Gene discovery and gene expression in the rice blast fungus, Magnaporthe grisea: analysis of expressed sequence tags. Mol Plant Microbe Interact 17, 1337–1347.[CrossRef]
    [Google Scholar]
  9. Ewing, B., Hillier, L., Wendl, M. C. & Green, P. ( 1998; ). Base-calling of automated sequencer traces using Phred. I. Accuracy assessment. Genome Res 8, 175–185.[CrossRef]
    [Google Scholar]
  10. Freimoser, F. M., Screen, S., Bagga, S., Hu, G. & St Leger, R. J. ( 2003a; ). Expressed sequence tag (EST) analysis of two subspecies of Metarhizium anisopliae reveals a plethora of secreted proteins with potential activity in insect hosts. Microbiology 149, 239–247.[CrossRef]
    [Google Scholar]
  11. Freimoser, F. M., Screen, S., Hu, G. & St Leger, R. J. ( 2003b; ). EST analysis of genes expressed by the zygomycete pathogen Conidiobolus coronatus during growth on insect cuticle. Microbiology 149, 1893–1900.[CrossRef]
    [Google Scholar]
  12. Furlong, M. J. & Pell, J. K. ( 2001; ). Horizontal transmission of entomopathogenic fungi by the diamondback moth. Biol Control 22, 288–299.[CrossRef]
    [Google Scholar]
  13. Glare, T. R. ( 1988; ). Variation in the entomopathogenic fungal genus Zoophthora, with special reference to Z. radicans. PhD dissertation, Australian National University.
  14. Glare, T. R. & Milner, R. J. ( 1991; ). Ecology of entomopathogenic fungi. In Handbook of Applied Mycology, Vol. 2: Humans, Animals, and Insects, pp. 547–612. Edited by D. K. Arora, L. Ajello & K. G. Mukerji. New York: Marcel Dekker.
  15. Goldman, G. H., dos Reis Marques, E., Duarte Ribeiro, D. C., de Souza Bernardes, L. A., Quiapin, A. C., Vitorelli, P. M., Savoldi, M., Semighini, C. P., de Oliveira, R. C. & other authors ( 2003; ). Expressed sequence tag analysis of the human pathogen Paracoccidioides brasiliensis yeast phase: identification of putative homologues of Candida albicans virulence and pathogenicity genes. Eukaryot Cell 2, 34–48.[CrossRef]
    [Google Scholar]
  16. Goldstein, A. L. & McCusker, J. H. ( 2001; ). Development of Saccharomyces cerevisiae as a model pathogen: a system for the genetic identification of gene products required for survival in the mammalian host environment. Genetics 159, 499–513.
    [Google Scholar]
  17. Howard, B. R., Vajdos, F. F., Li, S., Sundquist, W. I. & Hill, C. P. ( 2003; ). Structural insights into the catalytic mechanism of cyclophilin A. Nat Struct Biol 10, 475–481.[CrossRef]
    [Google Scholar]
  18. Humber, R. A. ( 1992; ). Collection of Entomopathogenic Fungal Cultures: Catalog of Strains. United States Department of Agriculture Publication ARS-100. Ithaca, NY: Agricultural Research Service.
  19. Hwang, C. S., Rhie, G., Oh, J. H., Huh, W. K., Yim, H. S. & Kang, S. O. ( 2002; ). Copper- and zinc-containing superoxide dismutase (Cu/ZnSOD) is required for the protection of Candida albicans against oxidative stresses and the expression of its full virulence. Microbiology 148, 3705–3713.
    [Google Scholar]
  20. Idnurm, A. & Howlett, B. J. ( 2002; ). Isocitrate lyase is essential for pathogenicity of the fungus Leptosphaeria maculans to canola (Brassica napus). Eukaryot Cell 1, 719–724.[CrossRef]
    [Google Scholar]
  21. Iwanaga, S. & Kawabata, S. ( 1998; ). Evolution and phylogeny of defense molecules associated with innate immunity in horseshoe crab. Front Biosci 3, D973–D984.
    [Google Scholar]
  22. Jeong, H. Y., Han, D. M., Jahng, K. Y. & Chae, K. S. ( 2000; ). The rpl16a gene for ribosomal protein L16A identified from expressed sequence tags is differentially expressed during sexual development of Aspergillus nidulans. Fungal Genet Biol 31, 69–78.[CrossRef]
    [Google Scholar]
  23. Joshi, L. & St Leger, R. J. ( 1999; ). Cloning, expression, and substrate specificity of MeCPA, a zinc carboxypeptidase that is secreted into infected tissues by the fungal entomopathogen Metarhizium anisopliae. J Biol Chem 274, 9803–9811.[CrossRef]
    [Google Scholar]
  24. Keon, J., Antoniw, J. R., Skinner, J. H. & Hammond-Kosack, K. ( 2005; ). Analysis of expressed sequence tags from the wheat leaf blotch pathogen Mycosphaerella graminicola (anamorph Septoria tritici). Fungal Genet Biol 42, 376–389.[CrossRef]
    [Google Scholar]
  25. Lee, N. & Kronstad, J. W. ( 2002; ). Ras2 controls morphogenesis, pheromone response, and pathogenicity in the fungal pathogen Ustilago maydis. Eukaryot Cell 1, 954–966.[CrossRef]
    [Google Scholar]
  26. Li, J., Xu, J. H. & Feng, M. G. ( 2004a; ). Infectivity of a Pieris brassicae-derived Zoophthora radicans isolate and its new host-passage isolates against Plutella xylostella in relation to the phenoloxidase activity in the new host hemolymph after infection. Acta Entomol Sin 47, 567–572.
    [Google Scholar]
  27. Li, R., Rimmer, R., Buchwaldt, L., Sharpe, A. G. & Swartz, G. S. ( 2004b; ). Interaction of Sclerotinia sclerotiorum with a resistant Brassica napus cultivar: expressed sequence tag analysis identifies genes associated with fungal pathogenesis. Fungal Genet Biol 41, 735–753.[CrossRef]
    [Google Scholar]
  28. Lorenz, M. C. & Fink, G. R. ( 2001; ). The glyoxylate cycle is required for fungal virulence. Nature 412, 83–86.[CrossRef]
    [Google Scholar]
  29. Navarro-Garcia, F., Sánchez, M., Nombela, C. & Pla, J. ( 2001; ). Virulence genes in the pathogenic yeast Candida albicans. FEMS Microbiol Rev 25, 245–268.[CrossRef]
    [Google Scholar]
  30. Nowierski, R. M., Zeng, Z., Jaronski, S., Delgado, F. & Swearingen, W. ( 1996; ). Analysis and modeling of time–dose–mortality of Melanoplus sanguinipes, Locusta migratoria migratorioides, and Schistocerca gregaria (Orthoptera: Acrididae) from Beauveria, Metarhizium, and Paecilomyces isolates from Madagascar. J Invertebr Pathol 67, 236–252.[CrossRef]
    [Google Scholar]
  31. Papierok, B., Valadao, L., Torres, B. & Arnault, M. ( 1984; ). Contribution à l'étude de la spécificité parasitaire du champignon entomopathogéne Zoophthora radicans (Zygomycetes, Entomophthorales). Entomophaga 29, 109–119.[CrossRef]
    [Google Scholar]
  32. Pell, J. K., Eilenberg, J., Hajek, A. E. & Steinkraus, D. C. ( 2001; ). Biology, ecology and pest management potential of Entomophthorales. In Fungi as Biocontrol Agents: Progress, Problems and Potential, pp. 71–153. Edited by T. M. Butt, C. Jackson & N. Magan. Wallingford: CAB International.
  33. Posada-Buitrago, M. L. & Frederick, R. D. ( 2005; ). Expressed sequence tag analysis of the soybean rust pathogen Phakopsora pachyrhizi. Fungal Genet Biol 42, 949–962.[CrossRef]
    [Google Scholar]
  34. Quesada-Moraga, E. & Vey, A. ( 2003; ). Intra-specific variation in virulence and in vitro production of macromolecular toxins active against locust among Beauveria bassiana strains and effects of in vivo and in vitro passage on these factors. Biocontrol Sci Technol 13, 323–340.[CrossRef]
    [Google Scholar]
  35. Robertson, J. L. & Preisler, H. K. ( 1992; ). Pesticide Bioassays with Arthropods. Boca Raton, FL: CRC Press.
  36. Rodier, M. H., Moudni, B. E., Kauffmann-Lacroix, C., Daniault, G. & Jacquemin, J. L. ( 1999; ). A Candida albicans metallopeptidase degrades constitutive proteins of extracellular matrix. FEMS Microbiol Lett 177, 205–210.[CrossRef]
    [Google Scholar]
  37. Rude, T. H., Toffaletti, D. L., Cox, G. M. & Perfect, J. R. ( 2002; ). Relationship of the glyoxylate pathway to the pathogenesis of Cryptococcus neoformans. Infect Immun 70, 5684–5694.[CrossRef]
    [Google Scholar]
  38. Screen, S. E. & St Leger, R. J. ( 2000; ). Cloning, expression, and substrate specificity of a fungal chymotrypsin. J Biol Chem 275, 6689–6694.[CrossRef]
    [Google Scholar]
  39. Shah, P. A. & Pell, J. K. ( 2003; ). Entomopathogenic fungi as biological control agents. Appl Microbiol Biotechnol 61, 413–423.[CrossRef]
    [Google Scholar]
  40. Sims, A. H., Robson, G. D., Hoyle, D. C., Oliver, S. G., Turner, G., Prade, R. A., Russell, H. H., Dunn-Coleman, N. S. & Gent, M. E. ( 2004; ). Use of expressed sequence tag analysis and cDNA microarrays of the filamentous fungus Aspergillus nidulans. Fungal Genet Biol 41, 199–212.[CrossRef]
    [Google Scholar]
  41. St Leger, R. J., Bidochka, M. J. & Roberts, D. W. ( 1994; ). Isoforms of the cuticle-degrading Pr1 proteinase and production of a metalloproteinase by Metarhizium anisopliae. Arch Biochem Biophys 313, 1–7.[CrossRef]
    [Google Scholar]
  42. Tang, Q. Y. & Feng, M. G. ( 2002; ). Practical Statistics and DPS Data Processing System. Beijing, China: Science Press.
  43. ten Have, A., Dekkers, E., Kay, J., Phylip, L. H. & Kan, J. A. L. ( 2004; ). An aspartic proteinase gene family in the filamentous fungus Botrytis cinerea contains members with novel features. Microbiology 150, 2475–2489.[CrossRef]
    [Google Scholar]
  44. Thomas, S. W., Rasmussen, S. W., Glaring, M. A., Rouster, J. A., Christiansen, S. K. & Oliver, R. P. ( 2001; ). Gene identification in the obligate fungal pathogen Blumeria graminis by expressed sequence tag analysis. Fungal Genet Biol 33, 195–211.[CrossRef]
    [Google Scholar]
  45. Trail, F., Xu, J. R., Miguel, P. S., Halgren, R. G. & Kistlere, H. C. ( 2003; ). Analysis of expressed sequence tags from Gibberella zeae (anamorph Fusarium graminearum). Fungal Genet Biol 38, 187–197.[CrossRef]
    [Google Scholar]
  46. Viaud, M. C., Balhadere, P. V. & Talbot, N. J. ( 2002; ). A Magnaporthe grisea cyclophilin acts as a virulence determinant during plant infection. Plant Cell 14, 917–930.[CrossRef]
    [Google Scholar]
  47. Wall, D. M., Duffy, P. S., DuPont, C., Prescott, J. F. & Meijer, W. G. ( 2005; ). Isocitrate lyase activity is required for virulence of the intracellular pathogen Rhodococcus equi. Infect Immun 73, 6736–6741.[CrossRef]
    [Google Scholar]
  48. Wang, Z., Zheng, L., Liu, H. B., Wang, Q. F., Hauser, M., Kauffman, S., Becker, J. M. & Szaniszlo, P. J. ( 2001; ). WdChs2p, a class I chitin synthase, together with WdChs3p (Class III) contributes to virulence in Wangiella (Exophiala) dermatitidis. Infect Immun 69, 7517–7526.[CrossRef]
    [Google Scholar]
  49. Wang, Z. Y., Thornton, C. R., Kershaw, M. J., Li, D. B. & Talbot, N. J. ( 2003; ). The glyoxylate cycle is required for temporal regulation of virulence by the plant pathogenic fungus Magnaporthe grisea. Mol Microbiol 47, 1601–1612.[CrossRef]
    [Google Scholar]
  50. Wraight, S. P., Galaini-Wraight, S., Carruthers, R. I. & Robertsa, D. W. ( 2003; ). Zoophthora radicans (Zygomycetes: Entomophthorales) conidia production from naturally infected Empoasca kraemeri and dry-formulated mycelium under laboratory and field conditions. Biol Control 28, 60–77.[CrossRef]
    [Google Scholar]
  51. Wu, G. S., Shortt, B. J., Lawrence, E. B., Leon, J., Fitzsimmons, K. C., Levine, E. B., Raskin, I. & Shah, D. W. ( 1997; ). Activation of host defense mechanisms by elevated production of H2O2 in transgenic plants. Plant Physiol 115, 427–435.
    [Google Scholar]
  52. Xu, J. H. & Feng, M. G. ( 2000; ). The time-dose-mortality modeling and virulence indices for the two entomophthoralean species, Pandora delphacis and P. neoaphidis, against the green peach aphid, Myzus persicae. Biol Control 17, 29–34.[CrossRef]
    [Google Scholar]
  53. Xu, J. H., Feng, M. G. & Xu, Q. ( 1998; ). The role of extracellular proteases of entomopathogenic fungi in host-pathogenic process and their assay techniques. Chinese J Biol Control 14, 123–130.
    [Google Scholar]
  54. Xu, J. H., Baldwin, D., Kindrachuk, C. & Hegedus, D. D. ( 2006; ). Serine proteases and metalloproteases associated with pathogenesis but not host specificity in the Entomophthoralean fungus, Zoophthora radicans. Can J Microbiol 52, 550–559.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.022103-0
Loading
/content/journal/micro/10.1099/mic.0.022103-0
Loading

Data & Media loading...

Supplements

vol. , part 1, pp. 174-185

Table 1.showing annotations and functional categories of ESTs from both original and new host-passage isolates is available as a PDF file.



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error