-
Volume 155,
Issue 1,
2009
Volume 155, Issue 1, 2009
- Mini-Reviews
-
-
-
A pivotal role for the response regulator DegU in controlling multicellular behaviour
More LessBacteria control multicellular behavioural responses, including biofilm formation and swarming motility, by integrating environmental cues through a complex regulatory network. Heterogeneous gene expression within an otherwise isogenic cell population that allows for differentiation of cell fate is an intriguing phenomenon that adds to the complexity of multicellular behaviour. This review focuses on recent data about how DegU, a pleiotropic response regulator, co-ordinates multicellular behaviour in Bacillus subtilis. We review studies that challenge the conventional understanding of the molecular mechanisms underpinning the DegU regulatory system and others that describe novel targets of DegU during activation of biofilm formation by B. subtilis. We also discuss a novel role for DegU in regulating multicellular processes in the food-borne pathogen Listeria monocytogenes.
-
-
-
-
Early molecular-recognition events in the synthesis and export of group 2 capsular polysaccharides
More LessThe outer membrane (OM) of almost all Gram-negative bacteria is composed of phospholipids, lipopolysaccharide, proteins and capsular or loosely adherent polysaccharides that together mediate cellular interactions with diverse environments. Most OM components are synthesized intracellularly or at the inner membrane (IM) and thus require an export mechanism. This mini-review focuses on recent progress in understanding how synthesis of one kind of capsular polysaccharide (group 2) is coupled to the export apparatus located in the IM and spanning the periplasmic space, thus providing a transport channel to the cell surface. Although the model system for these investigations is the medically important extraintestinal pathogen Escherichia coli K1 and its polysialic acid capsule, the conclusions are general for other group 2 and group 2-like polysaccharides synthesized by many different bacterial species.
-
- Cell And Molecular Biology Of Microbes
-
-
-
Role of the sRNA GcvB in regulation of cycA in Escherichia coli
More LessIn Escherichia coli, the gcvB gene encodes a small non-translated RNA that regulates several genes involved in transport of amino acids and peptides (including sstT, oppA and dppA). Microarray analysis identified cycA as an additional regulatory target of GcvB. The cycA gene encodes a permease for the transport of glycine, d-alanine, d-serine and d-cycloserine. RT-PCR confirmed that GcvB and the Hfq protein negatively regulate cycA mRNA in cells grown in Luria–Bertani broth. In addition, deletion of the gcvB gene resulted in increased sensitivity to d-cycloserine, consistent with increased expression of cycA. A cycA : : lacZ translational fusion confirmed that GcvB negatively regulates cycA expression in Luria–Bertani broth and that Hfq is required for the GcvB effect. GcvB had no effect on cycA : : lacZ expression in glucose minimal medium supplemented with glycine. However, Hfq still negatively regulated the fusion in the absence of GcvB. A set of transcriptional fusions of cycA to lacZ identified a sequence in cycA necessary for regulation by GcvB. Analysis of GcvB identified a region complementary to this region of cycA mRNA. However, mutations predicted to disrupt base-pairing between cycA mRNA and GcvB did not alter expression of cycA : : lacZ. A model for GcvB function in cell physiology is discussed.
-
-
-
-
Role of the Escherichia coli Hfq protein in GcvB regulation of oppA and dppA mRNAs
More LessThe gcvB gene encodes a small non-translated RNA (referred to as GcvB) that regulates oppA and dppA, two genes that encode periplasmic binding proteins for the oligopeptide and dipeptide transport systems. Hfq, an RNA chaperone protein, binds many small RNAs and is required for the small RNAs to regulate expression of their respective target genes. We showed that repression by GcvB of dppA : : lacZ and oppA : : phoA translational fusions is dependent upon Hfq. Double mutations in gcvB and hfq yielded similar expression levels of dppA : : lacZ and oppA : : phoA compared with gcvB or hfq single mutations, suggesting that GcvB and Hfq repress by the same mechanism. The effect of Hfq is not through regulation of transcription of gcvB. Hfq is known to increase the stability of some small RNAs and to facilitate the interactions between small RNAs and specific mRNAs. In the absence of Hfq, there is a marked decrease in the half-life of GcvB in cells grown in both Luria–Bertani broth and glucose minimal medium with glycine, suggesting that part of the role of Hfq is to stabilize GcvB. Overproduction of GcvB in wild-type Escherichia coli results in superrepression of a dppA : : lacZ fusion, but overproduction of GcvB in an hfq mutant does not result in significant repression of the dppA : : lacZ fusion. These results suggest that Hfq also is likely required for GcvB–mRNA pairing.
-
-
-
Regulation of the PcoI/PcoR quorum-sensing system in Pseudomonas fluorescens 2P24 by the PhoP/PhoQ two-component system
More LessA quorum-sensing locus, pcoI/pcoR, which is involved in the regulation of root colonization and plant disease-suppressive ability, was previously identified in Pseudomonas fluorescens 2P24. In this study, we performed random mutagenesis using mini-Tn5 in order to screen the upstream transcriptional regulators of pcoI, a biosynthase gene responsible for the synthesis of N-acylhomoserine lactone signal molecules. Two mutants, PM400 and PM410, with elevated pcoI gene promoter activity, were identified from ∼10 000 insertion clones. The amino acid sequences of the interrupted genes in these two mutants were highly similar to PhoQ, a sensor protein of the two-component regulatory system PhoP/PhoQ, which responds to environmental Mg2+ starvation and regulates virulence in Salmonella typhimurium and antimicrobial peptide resistance in Pseudomonas aeruginosa. The promoter activity of pcoI was also induced under low-Mg2+ conditions in the 2P24 strain of P. fluorescens. Deletion mutagenesis and complementation experiments demonstrated that the transcription of pcoI was negatively regulated by the sensor PhoQ but positively regulated by the response regulator PhoP. Genetic evidence also indicated that transcription of the outer-membrane protein gene oprH was induced by Mg2+ starvation through regulation of the wild-type PhoP/PhoQ system. Additionally, PhoQ was involved in biofilm formation by 2P24 under low-Mg2+ conditions through a PhoP-independent pathway.
-
-
-
In the absence of Lgt, lipoproteins are shed from Streptococcus uberis independently of Lsp
More LessThe role of lipoprotein diacylglyceryl transferase (Lgt) and lipoprotein signal peptidase (Lsp) responsible for processing lipoproteins was investigated in Streptococcus uberis, a common cause of bovine mastitis. In the absence of Lgt, three lipoproteins [MtuA (SUB0473), Hap (SUB1625) and an extracellular solute-binding protein (SUB0365)] were detected in extracellular locations. All were shown by Edman degradation analysis to be cleaved on the carboxy side of the LXXC lipobox. Detection of MtuA, a lipoprotein shown previously to be essential for infectivity and virulence, was used as a surrogate lipoprotein marker to locate and assess processing of lipoproteins. The absence of Lgt did not prevent location of MtuA to the cell membrane, its location in the wild-type strain but, in contrast to the situation with wild-type, did result in a widespread location of this protein. In the absence of both Lgt and Lsp, MtuA was similarly released from the bacterial cell. In such strains, however, the cell-associated MtuA represented the full-length gene product, indicating that Lsp was able to cleave non-lipidated (lipo)proteins but was not responsible for their release from this bacterium.
-
-
-
hag expression in Bacillus subtilis is both negatively and positively regulated by ScoC
More LessIn Bacillus subtilis, motility and chemotaxis require the expression of hag, which encodes flagellin. This gene is transcribed by the σ D form of RNA polymerase and is regulated by a group of proteins called transition state regulators (TSRs). Our studies show that hag transcription is negatively regulated by the transition state regulator ScoC, by binding to its promoter. Furthermore, ScoC, indirectly, also positively regulates hag by increasing the availability of σ D by downregulating the levels of the anti-σ D-factor FlgM. We further show that the positive regulation by ScoC predominates over the negative regulation.
-
- Environmental And Evolutionary Microbiology
-
-
-
Involvement of the oscA gene in the sulphur starvation response and in Cr(VI) resistance in Pseudomonas corrugata 28
More LessPseudomonas corrugata 28 is a Cr(VI)-hyper-resistant bacterium. A Cr(VI)-sensitive mutant was obtained by insertional mutagenesis using EZ-Tn5
γori/KAN-2>Tnp. The mutant strain was impaired in a gene, here named oscA (organosulphur compounds), which encoded a hypothetical small protein of unknown function. The gene was located upstream of a gene cluster that encodes the components of the sulphate ABC transporter, and it formed a transcriptional unit with sbp, which encoded the periplasmic binding protein of the transporter. The oscA–sbp transcriptional unit was strongly and quickly overexpressed after chromate exposure, suggesting the involvement of oscA in chromate resistance, which was further confirmed by means of a complementation experiment. Phenotype MicroArray (PM) analysis made it possible to assay 1536 phenotypes and also indicated that the oscA gene was involved in the utilization of organosulphur compounds as a sole source of sulphur. This is believed to be the first evidence that oscA plays a role in activating a sulphur starvation response, which is required to cope with oxidative stress induced by chromate.
-
-
- Genes And Genomes
-
-
-
Characterization of the LacI-type transcriptional repressor RbsR controlling ribose transport in Corynebacterium glutamicum ATCC 13032
The gene products of the rbsRACBD (rbs) operon of C. glutamicum (cg1410–cg1414) encode a ribose-specific ATP-binding cassette (ABC) transport system and its corresponding regulatory protein (RbsR). Deletion of the structural genes rbsACBD prohibited ribose uptake. Deletion of the regulatory gene rbsR resulted in an increased mRNA level of the whole operon. Analysis of the promoter region of the rbs operon by electrophoretic mobility shift assays identified a catabolite-responsive element (cre)-like sequence as the RbsR-binding site. Additional RbsR-binding sites were identified in front of the recently characterized uriR operon (uriR-rbsK1-uriT-uriH) and the ribokinase gene rbsK2. In vitro, the repressor RbsR bound to its targets in the absence of an effector. A probable negative effector of RbsR in vivo is ribose 5-phosphate or a derivative thereof, since in a ribokinase (rbsK1 rbsK2) double mutant, no derepression of the rbs operon in the presence of ribose was observed. Analysis of the ribose stimulon in the C. glutamicum wild-type revealed transcriptional induction of the uriR and rbs operons as well as of the rbsK2 gene. The inconsistency between the existence of functional RbsR-binding sites upstream of the ribokinase genes, their transcriptional induction during growth on ribose, and the missing induction in the rbsR mutant suggested the involvement of a second transcriptional regulator. Simultaneous deletion of the regulatory genes rbsR and uriR finally demonstrated a transcriptional co-control of the rbs and uriR operons and the rbsK2 gene by both regulators, RbsR and UriR, which were furthermore shown to recognize the same cognate DNA sequences in the operators of their target genes.
-
-
-
-
The two-component system BfrAB regulates expression of ABC transporters in Streptococcus gordonii and Streptococcus sanguinis
The putative two-component system BfrAB is involved in Streptococcus gordonii biofilm development. Here, we provide evidence that BfrAB regulates the expression of bfrCD and bfrEFG, which encode two ATP-binding cassette (ABC) transporters, and bfrH, which encodes a CAAX amino-terminal protease family protein. BfrC and BfrE are ATP-binding proteins, and BfrD, BfrF and BfrG are homologous membrane-spanning polypeptides. Similarly, BfrABss, the BfrAB homologous system in Streptococcus sanguinis, controls the expression of two bfrCD-homologous operons (bfrCD ss and bfrXY ss), a bfrH-homologous gene (bfrH1 ss) and another CAAX amino-terminal protease family protein gene (bfrH2ss ). Furthermore, we demonstrate that the purified BfrA DNA-binding domain from S. gordonii binds to the promoter regions of bfrCD, bfrEFG, bfrH, bfrCD ss, bfrXY ss and bfrH1 ss in vitro. Finally, we show that the BfrA DNA-binding domain recognizes a conserved DNA motif with a consensus sequence of TTTCTTTAGAAATATTTTAGAATT. These data suggest, therefore, that S. gordonii BfrAB controls biofilm formation by regulating multiple ABC-transporter systems.
-
-
-
Comparative EST analysis of a Zoophthora radicans isolate derived from Pieris brassicae and an isogenic strain adapted to Plutella xylostella
More LessZoophthora radicans is an entomopathogenic fungus with the potential to be used as an insect biological control agent. To better understand the mechanisms used by Z. radicans to infect different hosts, we generated expressed sequence tag (EST) datasets from a Z. radicans strain originally isolated from Pieris brassicae, and an isogenic strain passaged through Plutella xylostella. In total, 1839 ESTs were generated which clustered into 466 contigs and 433 singletons to provide a set of 899 unique sequences. Approximately 85 % of the ESTs were significantly similar (E≤e−03) to other fungal genes, of which 69.6 % encoded proteins with a reported function. Proteins involved in protein synthesis and metabolism were encoded by 38.3 % of the ESTs, while 26.3 % encoded proteins involved in cell-cycle regulation, DNA synthesis, protein fate, transport, cell defence, transcription and RNA synthesis, and 4.9 % encoded proteins associated with cellular transport, signal transduction, control of cellular organization and cell-wall degradation. Several proteinases, including aspartic proteinases, trypsins, trypsin-like serine proteases and metalloproteases, with the potential to degrade insect cuticle were expressed by the two isolates.
-
-
-
Experimental determination of translational start sites resolves uncertainties in genomic open reading frame predictions – application to Mycobacterium tuberculosis
Correct identification of translational start sites is important for understanding protein function and transcriptional regulation. The annotated translational start sites contained in genome databases are often predicted using bioinformatics and are rarely verified experimentally, and so are not all accurate. Therefore, we devised a simple approach for determining translational start sites using a combination of epitope tagging and frameshift mutagenesis. This assay was used to determine the start sites of three Mycobacterium tuberculosis proteins: LexA, SigC and Rv1955. We were able to show that proteins may begin before or after the predicted site. We also found that a small, non-annotated open reading frame upstream of Rv1955 was expressed as a protein, which we have designated Rv1954A. This approach is readily applicable to any bacterial species for which plasmid transformation can be achieved.
-
- Microbial Pathogenicity
-
-
-
Disruption of the epithelial barrier by botulinum haemagglutinin (HA) proteins – differences in cell tropism and the mechanism of action between HA proteins of types A or B, and HA proteins of type C
More LessOrally ingested botulinum neurotoxin (BoNT) causes food-borne botulism, but BoNT must pass through the gut lining and enter the bloodstream. We have previously found that type B haemagglutinin (HA) proteins in the toxin complex play an important role in the intestinal absorption of BoNT by disrupting the paracellular barrier of the intestinal epithelium, and therefore facilitating the transepithelial delivery of BoNT. Here, we show that type A HA proteins in the toxin complex have a similar disruptive activity and a greater potency than type B HA proteins in the human intestinal epithelial cell lines Caco-2 and T84 and in the canine kidney epithelial cell line MDCK I. In contrast, type C HA proteins in the toxin complex (up to 300 nM) have no detectable effect on the paracellular barrier in these human cell lines, but do show a barrier-disrupting activity and potent cytotoxicity in MDCK I. These findings may indicate that type A and B HA proteins contribute to the development of food-borne botulism, at least in humans, by facilitating the intestinal transepithelial delivery of BoNTs, and that the relative inability of type C HA proteins to disrupt the paracellular barrier of the human intestinal epithelium is one of the reasons for the relative absence of food-borne human botulism caused by type C BoNT.
-
-
-
-
Biofilm formation by group A Streptococcus: a role for the streptococcal regulator of virulence (Srv) and streptococcal cysteine protease (SpeB)
Recently, biofilms have become a topic of interest in the study of the human pathogen group A Streptococcus (GAS). In this study, we sought to learn more about the make-up of these structures and gain insight into biofilm regulation. Enzymic studies indicated that biofilm formation by GAS strain MGAS5005 required an extracellular protein and DNA component(s). Previous results indicated that inactivation of the transcriptional regulator Srv in MGAS5005 resulted in a significant decrease in virulence. Here, inactivation of Srv also resulted in a significant decrease in biofilm formation under both static and flow conditions. Given that production of the extracellular cysteine protease SpeB is increased in the srv mutant, we tested the hypothesis that increased levels of active SpeB may be responsible for the reduction in biofilm formation. Western immunoblot analysis indicated that SpeB was absent from MGAS5005 biofilms. Complementation of MGAS5005Δsrv restored the biofilm phenotype and eliminated the overproduction of active SpeB. Inhibition of SpeB with E64 also restored the MGAS5005Δsrv biofilm to wild-type levels.
-
-
-
A phenotypic microarray analysis of a Streptococcus mutans liaS mutant
More LessStreptococcus mutans, a biofilm-forming Gram-positive bacterium that resides in the human oral cavity, is considered to be the primary aetiological agent of human dental caries. A cell-envelope stress-sensing histidine kinase, LiaS, is considered to be important for expression of virulence factors such as glucan-binding protein C and mutacin production. In this study, a liaS mutant was subjected to phenotypic microarray (PM) analysis of about 2000 phenotypes, including utilization of various carbon, nitrogen, phosphate and sulfur sources; osmolytes; metabolic inhibitors; and susceptibility to toxic compounds, including several types of antibiotics. Compared to the parental strain UA159, the liaS mutant strain (IBS148) was more tolerant to various inhibitors that target protein synthesis, DNA synthesis and cell-wall biosynthesis. Some of the key findings of the PM analysis were confirmed in independent growth studies and by using antibiotic discs and E-test strips for susceptibility testing.
-
-
-
Attenuated enzootic (pestoides) isolates of Yersinia pestis express active aspartase
It is established that Yersinia pestis, the causative agent of bubonic plague, recently evolved from enteropathogenic Yersinia pseudotuberculosis by undergoing chromosomal degeneration while acquiring two unique plasmids that facilitate tissue invasion (pPCP) and dissemination by fleabite (pMT). Thereafter, plague bacilli spread from central Asia to sylvatic foci throughout the world. These epidemic isolates exhibit a broad host range including man as opposed to enzootic (pestoides) variants that remain in ancient reservoirs where infection is limited to muroid rodents. Cells of Y. pseudotuberculosis are known to express glucose-6-phosphate dehydrogenase (Zwf) and aspartase (AspA); these activities are not detectable in epidemic Y. pestis due to missense mutations (substitution of proline for serine at amino position 155 of Zwf and leucine for valine at position 363 of AspA). In this study, functional Zwf was found in pestoides strains E, F and G but not seven other enzootic isolates; enzymic activity was associated with retention of serine at amino acid position 155. Essentially, full AspA activity occurred in pestoides isolates where valine (pestoides A, B, C and D) or serine (pestoides E, F, G and I) occupied position 363. Reduced activity occurred in strains Angola and A16, which contained phenylalanine at this position. The k cat but not K m of purified AspA from strain Angola was significantly reduced. In this context, aspA of the recently described attenuated enzootic microtus biovar encodes active valine at position 363, further indicating that functional AspA is a biomarker for avirulence of Y. pestis in man.
-
-
-
Identification of iron-responsive proteins expressed by Chlamydia trachomatis reticulate bodies during intracellular growth
More LessThe obligate intracellular bacterium Chlamydia trachomatis serovar E is the most prevalent cause of bacterial sexually transmitted disease. With an established requirement for iron, the developmental cycle arrests at the intracellular reticulate body stage during iron restriction, resulting in a phenomenon termed persistence. Persistence has implications in natural infections for altered expression of virulence factors and antigens, in addition to a potential role in producing chronic infection. In this study, chlamydial proteins in iron-restricted, infected HEC-1B cells were radiolabelled during mid-developmental cycle growth, harvested, and separated using two-dimensional polyacrylamide gel electrophoresis (2D-PAGE). Of ∼250 radiolabelled protein species visualized, densitometric analysis revealed 25 proteins that increased in expression under iron restriction compared to iron-sufficient control samples; ten protein species identified by mass spectrometry are involved in the oxidative damage response (alkyl hydroperoxide reductase, 6-phosphogluconolactonase and acyl carrier protein synthase), transcription (RNA polymerase subunit alpha and transcription anti-termination factors NusA and NusG), protein modification (peptide deformylase and trigger factor), and virulence (Chlamydia protein associating with death domains, CADD). Transcript-level expression patterns of ahpC, devB, cadd, fabF and ct538 were measured by quantitative RT-PCR throughout the developmental cycle, and each gene examined demonstrated a significant but small mid-cycle increase in transcript level in iron-restricted cultures compared to iron-replete controls. Taken together, these data suggest that the primary response of chlamydiae to reduced iron availability is to increase expression of proteins involved in protection against oxidative damage via iron-catalysed generation of reactive oxygen species and adaptation to stress by increasing expression of transcriptional machinery and other stress-responsive proteins.
-
-
-
Deletion of tolA in Salmonella Typhimurium generates an attenuated strain with vaccine potential
More LessThe Gram-negative Tol-Pal system of envelope proteins plays a key role in maintaining outer membrane integrity and contributes to the virulence of several pathogens. We have investigated the role of one of these proteins, TolA, in the biology of Salmonella enterica serovar Typhimurium. Deletion of tolA rendered strain SL1344 more susceptible to killing by bile and human serum. In addition the mutant had impaired membrane integrity and displayed alterations in LPS production. The tolA mutant was highly attenuated in mouse infections via the oral and intravenous routes. Importantly, each phenotype displayed by the mutant was complemented by provision of tolA in trans. The tolA gene therefore contributes to virulence, membrane integrity, LPS production and bile and serum resistance in S. enterica serovar Typhimurium SL1344. Finally, immunization with the tolA mutant provided significant protection against subsequent challenge with wild-type SL1344. The Tol-Pal system is therefore a potential target in the development of novel attenuated live vaccines against Salmonella and other Gram-negative pathogens.
-
-
-
Osmoregulated periplasmic glucans of Salmonella enterica serovar Typhimurium are required for optimal virulence in mice
We purified osmoregulated periplasmic glucans (OPGs) from Salmonella enterica serovar Typhimurium and found them to be composed of 100 % glucose with 2-linked glucose as the most abundant residue, with terminal glucose, 2,3-linked and 2,6-linked glucose also present in high quantities. The two structural genes for OPG biosynthesis, opgG and opgH, form a bicistronic operon, and insertion of a kanamycin resistance gene cassette into this operon resulted in a strain devoid of OPGs. The opgGH mutant strain was impaired in motility and growth under low osmolarity conditions. The opgGH mutation also resulted in a 2 log increase in the LD50 in mice compared to the wild-type strain SL1344. Inability to synthesize OPGs had no significant impact on the organism's lipopolysaccharide pattern or its ability to survive antimicrobial peptides-, detergent-, pH- and nutrient-stress conditions. We observed that the opgGH-defective strain respired at a reduced rate under acidic growth conditions (pH 5.0) and had lower ATP levels compared to the wild-type strain. These data indicate that OPGs of S. Typhimurium contribute towards mouse virulence as well as growth and motility under low osmolarity growth conditions.
-
-
-
SufA – a bacterial enzyme that cleaves fibrinogen and blocks fibrin network formation
Finegoldia magna is a member of the normal human bacterial flora on the skin and other non-sterile body surfaces, but this anaerobic coccus is also an important opportunistic pathogen. SufA was the first F. magna proteinase to be isolated and characterized. Many bacterial pathogens interfere with different steps of blood coagulation, and here we describe how purified SufA efficiently and specifically cleaves fibrinogen in human plasma. SufA is both secreted by F. magna and associated with the bacterial surface. Successful gene targeting has previously not been performed in anaerobic cocci, but in order to study the role of the SufA that is present at the bacterial surface, we constructed an F. magna mutant that expresses a truncated SufA lacking proteolytic activity. In contrast to wild-type bacteria that delayed the coagulation of human plasma, mutant bacteria had no such effect. Wild-type and mutant bacteria adhered to keratinocytes equally well, but in a plasma environment only wild-type bacteria blocked the formation of fibrin networks surrounding adherent bacteria. The effective cleavage of fibrinogen by SufA suggests that the interference with fibrin network formation represents an adaptive mechanism of F. magna with potential implications also for pathogenicity.
-
Volumes and issues
-
Volume 171 (2025)
-
Volume 170 (2024)
-
Volume 169 (2023)
-
Volume 168 (2022)
-
Volume 167 (2021)
-
Volume 166 (2020)
-
Volume 165 (2019)
-
Volume 164 (2018)
-
Volume 163 (2017)
-
Volume 162 (2016)
-
Volume 161 (2015)
-
Volume 160 (2014)
-
Volume 159 (2013)
-
Volume 158 (2012)
-
Volume 157 (2011)
-
Volume 156 (2010)
-
Volume 155 (2009)
-
Volume 154 (2008)
-
Volume 153 (2007)
-
Volume 152 (2006)
-
Volume 151 (2005)
-
Volume 150 (2004)
-
Volume 149 (2003)
-
Volume 148 (2002)
-
Volume 147 (2001)
-
Volume 146 (2000)
-
Volume 145 (1999)
-
Volume 144 (1998)
-
Volume 143 (1997)
-
Volume 142 (1996)
-
Volume 141 (1995)
-
Volume 140 (1994)
-
Volume 139 (1993)
-
Volume 138 (1992)
-
Volume 137 (1991)
-
Volume 136 (1990)
-
Volume 135 (1989)
-
Volume 134 (1988)
-
Volume 133 (1987)
-
Volume 132 (1986)
-
Volume 131 (1985)
-
Volume 130 (1984)
-
Volume 129 (1983)
-
Volume 128 (1982)
-
Volume 127 (1981)
-
Volume 126 (1981)
-
Volume 125 (1981)
-
Volume 124 (1981)
-
Volume 123 (1981)
-
Volume 122 (1981)
-
Volume 121 (1980)
-
Volume 120 (1980)
-
Volume 119 (1980)
-
Volume 118 (1980)
-
Volume 117 (1980)
-
Volume 116 (1980)
-
Volume 115 (1979)
-
Volume 114 (1979)
-
Volume 113 (1979)
-
Volume 112 (1979)
-
Volume 111 (1979)
-
Volume 110 (1979)
-
Volume 109 (1978)
-
Volume 108 (1978)
-
Volume 107 (1978)
-
Volume 106 (1978)
-
Volume 105 (1978)
-
Volume 104 (1978)
-
Volume 103 (1977)
-
Volume 102 (1977)
-
Volume 101 (1977)
-
Volume 100 (1977)
-
Volume 99 (1977)
-
Volume 98 (1977)
-
Volume 97 (1976)
-
Volume 96 (1976)
-
Volume 95 (1976)
-
Volume 94 (1976)
-
Volume 93 (1976)
-
Volume 92 (1976)
-
Volume 91 (1975)
-
Volume 90 (1975)
-
Volume 89 (1975)
-
Volume 88 (1975)
-
Volume 87 (1975)
-
Volume 86 (1975)
-
Volume 85 (1974)
-
Volume 84 (1974)
-
Volume 83 (1974)
-
Volume 82 (1974)
-
Volume 81 (1974)
-
Volume 80 (1974)
-
Volume 79 (1973)
-
Volume 78 (1973)
-
Volume 77 (1973)
-
Volume 76 (1973)
-
Volume 75 (1973)
-
Volume 74 (1973)
-
Volume 73 (1972)
-
Volume 72 (1972)
-
Volume 71 (1972)
-
Volume 70 (1972)
-
Volume 69 (1971)
-
Volume 68 (1971)
-
Volume 67 (1971)
-
Volume 66 (1971)
-
Volume 65 (1971)
-
Volume 64 (1970)
-
Volume 63 (1970)
-
Volume 62 (1970)
-
Volume 61 (1970)
-
Volume 60 (1970)
-
Volume 59 (1969)
-
Volume 58 (1969)
-
Volume 57 (1969)
-
Volume 56 (1969)
-
Volume 55 (1969)
-
Volume 54 (1968)
-
Volume 53 (1968)
-
Volume 52 (1968)
-
Volume 51 (1968)
-
Volume 50 (1968)
-
Volume 49 (1967)
-
Volume 48 (1967)
-
Volume 47 (1967)
-
Volume 46 (1967)
-
Volume 45 (1966)
-
Volume 44 (1966)
-
Volume 43 (1966)
-
Volume 42 (1966)
-
Volume 41 (1965)
-
Volume 40 (1965)
-
Volume 39 (1965)
-
Volume 38 (1965)
-
Volume 37 (1964)
-
Volume 36 (1964)
-
Volume 35 (1964)
-
Volume 34 (1964)
-
Volume 33 (1963)
-
Volume 32 (1963)
-
Volume 31 (1963)
-
Volume 30 (1963)
-
Volume 29 (1962)
-
Volume 28 (1962)
-
Volume 27 (1962)
-
Volume 26 (1961)
-
Volume 25 (1961)
-
Volume 24 (1961)
-
Volume 23 (1960)
-
Volume 22 (1960)
-
Volume 21 (1959)
-
Volume 20 (1959)
-
Volume 19 (1958)
-
Volume 18 (1958)
-
Volume 17 (1957)
-
Volume 16 (1957)
-
Volume 15 (1956)
-
Volume 14 (1956)
-
Volume 13 (1955)
-
Volume 12 (1955)
-
Volume 11 (1954)
-
Volume 10 (1954)
-
Volume 9 (1953)
-
Volume 8 (1953)
-
Volume 7 (1952)
-
Volume 6 (1952)
-
Volume 5 (1951)
-
Volume 4 (1950)
-
Volume 3 (1949)
-
Volume 2 (1948)
-
Volume 1 (1947)
Most Read This Month
