1887

Abstract

Orally ingested botulinum neurotoxin (BoNT) causes food-borne botulism, but BoNT must pass through the gut lining and enter the bloodstream. We have previously found that type B haemagglutinin (HA) proteins in the toxin complex play an important role in the intestinal absorption of BoNT by disrupting the paracellular barrier of the intestinal epithelium, and therefore facilitating the transepithelial delivery of BoNT. Here, we show that type A HA proteins in the toxin complex have a similar disruptive activity and a greater potency than type B HA proteins in the human intestinal epithelial cell lines Caco-2 and T84 and in the canine kidney epithelial cell line MDCK I. In contrast, type C HA proteins in the toxin complex (up to 300 nM) have no detectable effect on the paracellular barrier in these human cell lines, but do show a barrier-disrupting activity and potent cytotoxicity in MDCK I. These findings may indicate that type A and B HA proteins contribute to the development of food-borne botulism, at least in humans, by facilitating the intestinal transepithelial delivery of BoNTs, and that the relative inability of type C HA proteins to disrupt the paracellular barrier of the human intestinal epithelium is one of the reasons for the relative absence of food-borne human botulism caused by type C BoNT.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.021246-0
2009-01-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/1/35.html?itemId=/content/journal/micro/10.1099/mic.0.021246-0&mimeType=html&fmt=ahah

References

  1. Arimitsu, H., Inoue, K., Sakaguchi, Y., Lee, J., Fujinaga, Y., Watanabe, T., Ohyama, T., Hirst, R. & Oguma, K. ( 2003; ). Purification of fully activated Clostridium botulinum serotype B toxin for treatment of patients with dystonia. Infect Immun 71, 1599–1603.[CrossRef]
    [Google Scholar]
  2. Binz, T., Kurazono, H., Wille, M., Frevert, J., Wernars, K. & Niemann, H. ( 1990; ). The complete sequence of botulinum neurotoxin type A and comparison with other clostridial neurotoxins. J Biol Chem 265, 9153–9158.
    [Google Scholar]
  3. Coffield, J. A., Bakry, N., Zhang, R. D., Carlson, J., Gomella, L. G. & Simpson, L. L. ( 1997; ). In vitro characterization of botulinum toxin types A, C and D action on human tissues: combined electrophysiologic, pharmacologic and molecular biologic approaches. J Pharmacol Exp Ther 280, 1489–1498.
    [Google Scholar]
  4. Collins, M. D. & East, A. K. ( 1998; ). Phylogeny and taxonomy of the food-borne pathogen Clostridium botulinum and its neurotoxins. J Appl Microbiol 84, 5–17.[CrossRef]
    [Google Scholar]
  5. Couesnon, A., Pereira, Y. & Popoff, M. R. ( 2008; ). Receptor-mediated transcytosis of botulinum neurotoxin A through intestinal cell monolayers. Cell Microbiol 10, 375–387.
    [Google Scholar]
  6. Dineen, S. S., Bradshaw, M. & Johnson, E. A. ( 2003; ). Neurotoxin gene clusters in Clostridium botulinum type A strains: sequence comparison and evolutionary implications. Curr Microbiol 46, 345–352.[CrossRef]
    [Google Scholar]
  7. East, A. K., Bhandari, M., Stacey, J. M., Campbell, K. D. & Collins, M. D. ( 1996; ). Organization and phylogenetic interrelationships of genes encoding components of the botulinum toxin complex in proteolytic Clostridium botulinum types A, B, and F: evidence of chimeric sequences in the gene encoding the nontoxic nonhemagglutinin component. Int J Syst Bacteriol 46, 1105–1112.[CrossRef]
    [Google Scholar]
  8. Fujinaga, Y., Inoue, K., Shimazaki, S., Tomochika, K., Tsuzuki, K., Fujii, N., Watanabe, T., Ohyama, T., Takeshi, K. & other authors ( 1994; ). Molecular construction of Clostridium botulinum type C progenitor toxin and its gene organization. Biochem Biophys Res Commun 205, 1291–1298.[CrossRef]
    [Google Scholar]
  9. Fujinaga, Y., Inoue, K., Watanabe, S., Yokota, K., Hirai, Y., Nagamachi, E. & Oguma, K. ( 1997; ). The haemagglutinin of Clostridium botulinum type C progenitor toxin plays an essential role in binding of toxin to the epithelial cells of guinea pig small intestine, leading to the efficient absorption of the toxin. Microbiology 143, 3841–3847.[CrossRef]
    [Google Scholar]
  10. Fujinaga, Y., Inoue, K., Nomura, T., Sasaki, J., Marvaud, J. C., Popoff, M. R., Kozaki, S. & Oguma, K. ( 2000; ). Identification and characterization of functional subunits of Clostridium botulinum type A progenitor toxin involved in binding to intestinal microvilli and erythrocytes. FEBS Lett 467, 179–183.[CrossRef]
    [Google Scholar]
  11. Fujinaga, Y., Inoue, K., Watarai, S., Sakaguchi, Y., Arimitsu, H., Lee, J. C., Jin, Y., Matsumura, T., Kabumoto, Y. & other authors ( 2004; ). Molecular characterization of binding subcomponents of Clostridium botulinum type C progenitor toxin for intestinal epithelial cells and erythrocytes. Microbiology 150, 1529–1538.[CrossRef]
    [Google Scholar]
  12. Hasegawa, K., Watanabe, T., Suzuki, T., Yamano, A., Oikawa, T., Sato, Y., Kouguchi, H., Yoneyama, T., Niwa, K. & other authors ( 2007; ). A novel subunit structure of Clostridium botulinum serotype D toxin complex with three extended arms. J Biol Chem 282, 24777–24783.[CrossRef]
    [Google Scholar]
  13. Hauser, D., Eklund, M. W., Kurazono, H., Binz, T., Niemann, H., Gill, D. M., Boquet, P. & Popoff, M. R. ( 1990; ). Nucleotide sequence of Clostridium botulinum C1 neurotoxin. Nucleic Acids Res 18, 4924 [CrossRef]
    [Google Scholar]
  14. Inoue, K., Fujinaga, Y., Watanabe, T., Ohyama, T., Takeshi, K., Moriishi, K., Nakajima, H. & Oguma, K. ( 1996; ). Molecular composition of Clostridium botulinum type A progenitor toxins. Infect Immun 64, 1589–1594.
    [Google Scholar]
  15. Inoue, K., Fujinaga, Y., Honke, K., Yokota, K., Ikeda, T., Ohyama, T., Takeshi, K., Watanabe, T. & Oguma, K. ( 1999; ). Characterization of haemagglutinin activity of Clostridium botulinum type C and D 16S toxins, and one subcomponent of haemagglutinin (HA1). Microbiology 145, 2533–2542.
    [Google Scholar]
  16. Kimura, K., Fujii, N., Tsuzuki, K., Murakami, T., Indoh, T., Yokosawa, N., Takeshi, K., Syuto, B. & Oguma, K. ( 1990; ). The complete nucleotide sequence of the gene coding for botulinum type C1 toxin in the C-ST phage genome. Biochem Biophys Res Commun 171, 1304–1311.[CrossRef]
    [Google Scholar]
  17. Kojima, S., Eguchi, H., Ookawara, T., Fujiwara, N., Yasuda, J., Nakagawa, K., Yamamura, T. & Suzuki, K. ( 2005; ). Clostridium botulinum type A progenitor toxin binds to Intestine-407 cells via N-acetyllactosamine moiety. Biochem Biophys Res Commun 331, 571–576.[CrossRef]
    [Google Scholar]
  18. LeClaire, R. D. & Pitt, M. L. M. ( 2004; ). Biological weapons defense: effect levels. In Biological Weapons Defense: Infectious Diseases and Counterbioterrorism, pp. 41–61. Edited by L. E. Lindler, F. J. Lebeda & G. W. Korch. Totowa, NJ: Humana Press.
  19. Lee, J. C., Yokota, K., Arimitsu, H., Hwang, H. J., Sakaguchi, Y., Cui, J., Takeshi, K., Watanabe, T., Ohyama, T. & Oguma, K. ( 2005; ). Production of anti-neurotoxin antibody is enhanced by two subcomponents, HA1 and HA3b, of Clostridium botulinum type B 16S toxin–haemagglutinin. Microbiology 151, 3739–3747.[CrossRef]
    [Google Scholar]
  20. Mahmut, N., Inoue, K., Fujinaga, Y., Arimitsu, H., Sakaguchi, Y., Hughes, L., Hirst, R., Murphy, T., Tsuji, T. & other authors ( 2002; ). Mucosal immunisation with Clostridium botulinum type C 16 S toxoid and its non-toxic component. J Med Microbiol 51, 813–820.
    [Google Scholar]
  21. Maksymowych, A. B. & Simpson, L. L. ( 1998; ). Binding and transcytosis of botulinum neurotoxin by polarized human colon carcinoma cells. J Biol Chem 273, 21950–21957.[CrossRef]
    [Google Scholar]
  22. Matsumura, T., Fujinaga, Y., Jin, Y., Kabumoto, Y. & Oguma, K. ( 2007; ). Human milk SIgA binds to botulinum type B 16S toxin and limits toxin adherence on T84 cells. Biochem Biophys Res Commun 352, 867–872.[CrossRef]
    [Google Scholar]
  23. Matsumura, T., Jin, Y., Kabumoto, Y., Takegahara, Y., Oguma, K., Lencer, W. I. & Fujinaga, Y. ( 2008; ). The HA proteins of botulinum toxin disrupt intestinal epithelial intercellular junctions to increase toxin absorption. Cell Microbiol 10, 355–364.
    [Google Scholar]
  24. Minton, N. P. ( 1995; ). Molecular genetics of clostridial neurotoxins. Curr Top Microbiol Immunol 195, 161–194.
    [Google Scholar]
  25. Nakajima, H., Inoue, K., Ikeda, T., Fujinaga, Y., Sunagawa, H., Takeshi, K., Ohyama, T., Watanabe, T. & Oguma, K. ( 1998; ). Molecular composition of the 16S toxin produced by a Clostridium botulinum type D strain, 1873. Microbiol Immunol 42, 599–605.[CrossRef]
    [Google Scholar]
  26. Nakamura, T., Takada, N., Tonozuka, T., Sakano, Y., Oguma, K. & Nishikawa, A. ( 2007; ). Binding properties of Clostridium botulinum type C progenitor toxin to mucins. Biochim Biophys Acta 1770, 551–555.[CrossRef]
    [Google Scholar]
  27. Nelson, W. J. ( 2003; ). Adaptation of core mechanisms to generate cell polarity. Nature 422, 766–774.[CrossRef]
    [Google Scholar]
  28. Nishikawa, A., Uotsu, N., Arimitsu, H., Lee, J. C., Miura, Y., Fujinaga, Y., Nakada, H., Watanabe, T., Ohyama, T. & other authors ( 2004; ). The receptor and transporter for internalization of Clostridium botulinum type C progenitor toxin into HT-29 cells. Biochem Biophys Res Commun 319, 327–333.[CrossRef]
    [Google Scholar]
  29. Niwa, K., Koyama, K., Inoue, S., Suzuki, T., Hasegawa, K., Watanabe, T., Ikeda, T. & Ohyama, T. ( 2007; ). Role of nontoxic components of serotype D botulinum toxin complex in permeation through a Caco-2 cell monolayer, a model for intestinal epithelium. FEMS Immunol Med Microbiol 49, 346–352.[CrossRef]
    [Google Scholar]
  30. Oguma, K., Inoue, K., Fujinaga, Y., Yokota, K., Watanabe, T., Ohyama, T., Takeshi, K. & Inoue, K. ( 1999; ). Structure and function of Clostridium botulinum progenitor toxin. J Toxicol Toxin Rev 18, 17–34.[CrossRef]
    [Google Scholar]
  31. Ohyama, T., Watanabe, T., Fujinaga, Y., Inoue, K., Sunagawa, H., Fujii, N. & Oguma, K. ( 1995; ). Characterization of nontoxic-nonhemagglutinin component of the two types of progenitor toxin (M and L) produced by Clostridium botulinum type D CB-16. Microbiol Immunol 39, 457–465.[CrossRef]
    [Google Scholar]
  32. Sakaguchi, G., Kosaki, S. & Ohishi, I. ( 1984; ). Structure and function of botulinum toxins. In Bacterial Protein Toxins (FEMS Symposium no. 24), pp. 435–443. Edited by J. E. Alouf. London: Academic Press.
  33. Schiavo, G., Matteoli, M. & Montecucco, C. ( 2000; ). Neurotoxins affecting neuroexocytosis. Physiol Rev 80, 717–766.
    [Google Scholar]
  34. Schroeder, G. N. & Hilbi, H. ( 2008; ). Molecular pathogenesis of Shigella spp.: controlling host cell signaling, invasion, and death by type III secretion. Clin Microbiol Rev 21, 134–156.[CrossRef]
    [Google Scholar]
  35. Shiau, Y. F., Fernandez, P., Jackson, M. J. & McMonagle, S. ( 1985; ). Mechanisms maintaining a low-pH microclimate in the intestine. Am J Physiol 248, G608–G617.
    [Google Scholar]
  36. Sugii, S. & Sakaguchi, G. ( 1975; ). Molecular construction of Clostridium botulinum type A toxins. Infect Immun 12, 1262–1270.
    [Google Scholar]
  37. Sunagawa, H., Ohyama, T., Watanabe, T. & Inoue, K. ( 1992; ). The complete amino acid sequence of the Clostridium botulinum type D neurotoxin, deduced by nucleotide sequence analysis of the encoding phage d-16φ genome. J Vet Med Sci 54, 905–913.[CrossRef]
    [Google Scholar]
  38. Taub, M. E., Kristensen, L. & Frokjaer, S. ( 2002; ). Optimized conditions for MDCK permeability and turbidimetric solubility studies using compounds representative of BCS classes I–IV. Eur J Pharm Sci 15, 331–340.[CrossRef]
    [Google Scholar]
  39. Tsuzuki, K., Kimura, K., Fujii, N., Yokosawa, N., Indoh, T., Murakami, T. & Oguma, K. ( 1990; ). Cloning and complete nucleotide sequence of the gene for the main component of hemagglutinin produced by Clostridium botulinum type C. Infect Immun 58, 3173–3177.
    [Google Scholar]
  40. Tsuzuki, K., Kimura, K., Fujii, N., Yokosawa, N. & Oguma, K. ( 1992; ). The complete nucleotide sequence of the gene coding for the nontoxic-nonhemagglutinin component of Clostridium botulinum type C progenitor toxin. Biochem Biophys Res Commun 183, 1273–1279.[CrossRef]
    [Google Scholar]
  41. Uotsu, N., Nishikawa, A., Watanabe, T., Ohyama, T., Tonozuka, T., Sakano, Y. & Oguma, K. ( 2006; ). Cell internalization and traffic pathway of Clostridium botulinum type C neurotoxin in HT-29 cells. Biochim Biophys Acta 1763, 120–128.[CrossRef]
    [Google Scholar]
  42. Vistica, D. T., Skehan, P., Scudiero, D., Monks, A., Pittman, A. & Boyd, M. R. ( 1991; ). Tetrazolium-based assays for cellular viability: a critical examination of selected parameters affecting formazan production. Cancer Res 51, 2515–2520.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.021246-0
Loading
/content/journal/micro/10.1099/mic.0.021246-0
Loading

Data & Media loading...

[PDF file](12 KB)

PDF

[PDF file](1544 KB)

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error