1887

Abstract

The gene products of the () operon of () encode a ribose-specific ATP-binding cassette (ABC) transport system and its corresponding regulatory protein (RbsR). Deletion of the structural genes prohibited ribose uptake. Deletion of the regulatory gene resulted in an increased mRNA level of the whole operon. Analysis of the promoter region of the operon by electrophoretic mobility shift assays identified a catabolite-responsive element ()-like sequence as the RbsR-binding site. Additional RbsR-binding sites were identified in front of the recently characterized operon (---) and the ribokinase gene . , the repressor RbsR bound to its targets in the absence of an effector. A probable negative effector of RbsR is ribose 5-phosphate or a derivative thereof, since in a ribokinase ( ) double mutant, no derepression of the operon in the presence of ribose was observed. Analysis of the ribose stimulon in the wild-type revealed transcriptional induction of the and operons as well as of the gene. The inconsistency between the existence of functional RbsR-binding sites upstream of the ribokinase genes, their transcriptional induction during growth on ribose, and the missing induction in the mutant suggested the involvement of a second transcriptional regulator. Simultaneous deletion of the regulatory genes and finally demonstrated a transcriptional co-control of the and operons and the gene by both regulators, RbsR and UriR, which were furthermore shown to recognize the same cognate DNA sequences in the operators of their target genes.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.020388-0
2009-01-01
2019-11-13
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/1/150.html?itemId=/content/journal/micro/10.1099/mic.0.020388-0&mimeType=html&fmt=ahah

References

  1. Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W. & Lipman, D. J. ( 1997; ). Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25, 3389–3402.[CrossRef]
    [Google Scholar]
  2. Brinkrolf, K., Plöger, S., Sandra, S., Brune, I., Nentwich, S. S., Hüser, A. T., Kalinowski, J., Pühler, A. & Tauch, A. ( 2008; ). The LacI/GalR family transcriptional regulator UriR negatively controls uridine utilization of Corynebacterium glutamicum by binding to carbon responsive element-like sequences. Microbiology 154, 1068–1081.[CrossRef]
    [Google Scholar]
  3. Brune, I., Brinkrolf, K., Kalinowski, J., Pühler, A. & Tauch, A. ( 2005; ). The individual and common repertoire of DNA-binding transcriptional regulators of Corynebacterium glutamicum, Corynebacterium efficiens, Corynebacterium diphtheriae and Corynebacterium jeikeium deduced from the complete genome sequences. BMC Genomics 6, 86 [CrossRef]
    [Google Scholar]
  4. Daber, R., Tayrook, S., Rosenberg, A. & Lewis, M. ( 2007; ). Structural analysis of Lac repressor bound to allosteric effectors. J Mol Biol 370, 609–619.[CrossRef]
    [Google Scholar]
  5. Dondrup, M., Goesmann, A., Bartels, D., Kalinowski, J., Krause, L., Linke, B., Rupp, O., Sczyrba, A., Pühler, A. & Meyer, F. ( 2003; ). EMMA: a platform for consistent storage and efficient analysis of microarray data. J Biotechnol 106, 135–146.[CrossRef]
    [Google Scholar]
  6. Ermolaeva, M. D., Khalak, H. G., White, O., Smith, H. O. & Salzberg, S. L. ( 2000; ). Prediction of transcription terminators in bacterial genomes. J Mol Biol 301, 27–33.[CrossRef]
    [Google Scholar]
  7. Frunzke, J., Engels, V., Hasenbein, S., Gätgens, C. & Bott, M. ( 2008; ). Co-ordinated regulation of gluconate catabolism and glucose uptake in Corynebacterium glutamicum by two functionally equivalent transcriptional regulators, GntR1 and GntR2. Mol Microbiol 67, 305–322.
    [Google Scholar]
  8. Fukami-Kobayashi, K., Tateno, Y. & Nishikawa, K. ( 2003; ). Parallel evolution of ligand specificity between LacI/GalR family repressors and periplasmic sugar-binding proteins. Mol Biol Evol 20, 267–277.[CrossRef]
    [Google Scholar]
  9. Hermann, T. ( 2003; ). Industrial production of amino acids by coryneform bacteria. J Biotechnol 104, 155–172.[CrossRef]
    [Google Scholar]
  10. Higgins, C. F. ( 2001; ). ABC transporters: physiology, structure and mechanism – an overview. Res Microbiol 152, 205–210.[CrossRef]
    [Google Scholar]
  11. Hope, J. N., Bell, A. W., Hermodson, M. A. & Groarke, J. M. ( 1986; ). Ribokinase from Escherichia coli K12. J Biol Chem 261, 7663–7668.
    [Google Scholar]
  12. Horton, R. M., Hunt, H. D., Ho, S. N., Pullen, J. K. & Pease, L. R. ( 1989; ). Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension. Gene 77, 61–68.[CrossRef]
    [Google Scholar]
  13. Hueck, C. J., Hillen, W. & Saier, M. H., Jr ( 1994; ). Analysis of a cis-active sequence mediating catabolite repression in Gram-positive bacteria. Res Microbiol 145, 503–518.[CrossRef]
    [Google Scholar]
  14. Hüser, A. T., Becker, A., Brune, I., Dondrup, M., Kalinowski, J., Plassmeier, J., Pühler, A., Wiegräbe, I. & Tauch, A. ( 2003; ). Development of a Corynebacterium glutamicum DNA microarray and validation by genome-wide expression profiling during growth with propionate as carbon source. J Biotechnol 106, 269–286.[CrossRef]
    [Google Scholar]
  15. Kalinowski, J., Bathe, B., Bartels, D., Bischoff, N., Bott, M., Burkovski, A., Dusch, N., Eggeling, L., Eikmanns, B. J. & other authors ( 2003; ). The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of l-aspartate-derived amino acids and vitamins. J Biotechnol 104, 5–25.[CrossRef]
    [Google Scholar]
  16. Katsumata, R., Ozaki, A., Oka, T. & Furuya, A. ( 1984; ). Protoplast transformation of glutamate-producing bacteria with plasmid DNA. J Bacteriol 159, 306–311.
    [Google Scholar]
  17. Kelle, R., Hermann, T. & Bathe, B. ( 2005; ). l-Lysine production. In Handbook of Corynebacterium glutamicum, pp. 465–488. Edited by L. Eggeling & M. Bott. Boca Raton, FL: CRC Press.
  18. Kimura, E. ( 2005; ). l-Glutamate production. In Handbook of Corynebacterium glutamicum, pp. 439–463. Edited by L. Eggeling & M. Bott. Boca Raton, FL: CRC Press.
  19. Kraus, A., Küster, E., Wagner, A., Hoffmann, K. & Hillen, W. ( 1998; ). Identification of a co-repressor binding site in catabolite control protein CcpA. Mol Microbiol 30, 955–963.[CrossRef]
    [Google Scholar]
  20. Liebl, W. ( 1991; ). Corynebacterium non-medical. In The Prokaryotes. A Handbook on the Biology of Bacteria, Ecophysiology, Isolation, Identification, Applications, pp. 1157–1171. Edited by A. Balows, H. G. Truper, M. Dworkin, W. Harder & K. H. Schleifer. New York: Springer.
  21. Liebl, W. ( 2005; ). Corynebacterium taxonomy. In Handbook of Corynebacterium glutamicum, pp. 9–34. Edited by L. Eggeling & M. Bott. Boca Raton, FL: CRC Press.
  22. Lopilato, J. E., Garwin, J. L., Emr, S. D., Silhavy, T. J. & Beckwith, J. R. ( 1984; ). d-Ribose metabolism in Escherichia coli K-12: genetics, regulation, and transport. J Bacteriol 158, 665–673.
    [Google Scholar]
  23. Madan Babu, M. & Teichmann, S. A. ( 2003a; ). Evolution of transcription factors and the gene regulatory network in Escherichia coli. Nucleic Acids Res 31, 1234–1244.[CrossRef]
    [Google Scholar]
  24. Madan Babu, M. & Teichmann, S. A. ( 2003b; ). Functional determinants of transcription factors in Escherichia coli: protein families and binding sites. Trends Genet 19, 75–79.[CrossRef]
    [Google Scholar]
  25. Marchler-Bauer, A., Anderson, J. B., DeWeese-Scott, C., Fedorova, N. D., Geer, L. Y., He, S., Hurwitz, D. I., Jackson, J. D., Jacobs, A. R. & other authors ( 2003; ). CDD: a curated Entrez database of conserved domain alignments. Nucleic Acids Res 31, 383–387.[CrossRef]
    [Google Scholar]
  26. Mauzy, C. A. & Hermodson, M. A. ( 1992; ). Structural and functional analyses of the repressor, RbsR, of the ribose operon of Escherichia coli. Protein Sci 1, 831–842.[CrossRef]
    [Google Scholar]
  27. Mauzy, C. A. & Hermodson, M. A. ( 1992; ). Structural homology between rbs repressor and ribose binding protein implies functional similarity. Protein Sci 1, 843–849.[CrossRef]
    [Google Scholar]
  28. Müller, W., Horstmann, N., Hillen, W. & Sticht, H. ( 2006; ). The transcription regulator RbsR represents a novel interaction partner of the phosphoprotein HPr-Ser46-P in Bacillus subtilis. FEBS J 273, 1251–1261.[CrossRef]
    [Google Scholar]
  29. Nguyen, C. C. & Saier, M. H., Jr ( 1995; ). Phylogenetic, structural and functional analyses of the LacI-GalR family of bacterial transcription factors. FEBS Lett 377, 98–102.[CrossRef]
    [Google Scholar]
  30. Overbeek, R., Begley, T., Butler, R. M., Choudhuri, J. V., Chuang, H. Y., Cohoon, M., de Crécy-Lagard, V., Diaz, N., Disz, T. & other authors ( 2005; ). The subsystems approach to genome annotation and its use in the project to annotate 1000 genomes. Nucleic Acids Res 33, 5691–5702.[CrossRef]
    [Google Scholar]
  31. Parche, S., Burkovski, A., Sprenger, G. A., Weil, B., Krämer, R. & Titgemeyer, F. ( 2001; ). Corynebacterium glutamicum: a dissection of the PTS. J Mol Microbiol Biotechnol 3, 423–428.
    [Google Scholar]
  32. Pátek, M., Nesvera, J., Guyonvarch, A., Reyes, O. & Leblon, G. ( 2003; ). Promoters of Corynebacterium glutamicum. J Biotechnol 104, 311–323.[CrossRef]
    [Google Scholar]
  33. Pérez-Rueda, E. & Collado-Vides, J. ( 2000; ). The repertoire of DNA-binding transcriptional regulators in Escherichia coli K-12. Nucleic Acids Res 28, 1838–1847.[CrossRef]
    [Google Scholar]
  34. Price, M. N., Huang, K. H., Alm, E. J. & Arkin, A. P. ( 2005; ). A novel method for accurate operon predictions in all sequenced prokaryotes. Nucleic Acids Res 33, 880–892.[CrossRef]
    [Google Scholar]
  35. Rey, D. A., Nentwich, S. S., Koch, D. J., Rückert, C., Pühler, A., Tauch, A. & Kalinowski, J. ( 2005; ). The McbR repressor modulated by the effector substance S-adenosylhomocysteine controls directly the transcription of a regulon involved in sulphur metabolism of Corynebacterium glutamicum ATCC 13032. Mol Microbiol 56, 871–887.[CrossRef]
    [Google Scholar]
  36. Rice, P., Longden, I. & Bleasby, A. ( 2000; ). EMBOSS: the European molecular biology open software suite. Trends Genet 16, 276–277.[CrossRef]
    [Google Scholar]
  37. Rittmann, D., Sorger-Hermann, U. & Wendisch, V. F. ( 2005; ). Phosphate starvation-inducible gene ushA encodes a 5′ nucleotidase required for growth of Corynebacterium glutamicum on media with nucleotides as the phosphorus source. Appl Environ Microbiol 71, 4339–4344.[CrossRef]
    [Google Scholar]
  38. Rodionov, D. A., Mironov, A. A. & Gelfand, M. S. ( 2001; ). Transcriptional regulation of pentose utilisation systems in the Bacillus/Clostridium group of bacteria. FEMS Microbiol Lett 205, 305–314.[CrossRef]
    [Google Scholar]
  39. Ryu, K. S., Kim, C., Kim, I., Yoo, S., Choi, B. S. & Park, C. ( 2004; ). NMR application probes a novel and ubiquitous family of enzymes that alter monosaccharide configuration. J Biol Chem 279, 25544–25548.[CrossRef]
    [Google Scholar]
  40. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  41. Schäfer, A., Tauch, A., Jäger, W., Kalinowski, J., Thierbach, G. & Pühler, A. ( 1994; ). Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene 145, 69–73.[CrossRef]
    [Google Scholar]
  42. Tauch, A., Kirchner, O., Wehmeier, L., Kalinowski, J. & Pühler, A. ( 1994; ). Corynebacterium glutamicum DNA is subjected to methylation-restriction in Escherichia coli. FEMS Microbiol Lett 123, 343–347.[CrossRef]
    [Google Scholar]
  43. Tauch, A., Kassing, F., Kalinowski, J. & Puhler, A. ( 1995; ). The Corynebacterium xerosis composite transposon Tn5432 consists of two identical insertion sequences, designated IS1249, flanking the erythromycin resistance gene ermCX. Plasmid 34, 119–131.[CrossRef]
    [Google Scholar]
  44. Tauch, A., Kirchner, O., Löffler, B., Götker, S., Pühler, A. & Kalinowski, J. ( 2002; ). Efficient electrotransformation of Corynebacterium diphtheriae with a mini-replicon derived from the Corynebacterium glutamicum plasmid pGA1. Curr Microbiol 45, 362–367.[CrossRef]
    [Google Scholar]
  45. Udaka, S. ( 1960; ). Screening method for microorganisms accumulating metabolites and its use in the isolation of Micrococcus glutamicus. J Bacteriol 79, 754–755.
    [Google Scholar]
  46. Wehmeier, L., Brockmann-Gretza, O., Pisabarro, A., Tauch, A., Pühler, A., Martín, J.-F. & Kalinowski, J. ( 2001; ). A Corynebacterium glutamicum mutant with a defined deletion within the rplK gene is impaired in (p)ppGpp accumulation upon amino acid starvation. Microbiology 147, 691–700.
    [Google Scholar]
  47. Wendisch, V. F. ( 2003; ). Genome-wide expression analysis in Corynebacterium glutamicum using DNA microarrays. J Biotechnol 104, 273–285.[CrossRef]
    [Google Scholar]
  48. Woodson, K. & Devine, K. M. ( 1994; ). Analysis of a ribose transport operon from Bacillus subtilis. Microbiology 140, 1829–1838.[CrossRef]
    [Google Scholar]
  49. Yokota, A. & Lindley, N. D. ( 2005; ). Central metabolism: sugar uptake and conversion. In Handbook of Corynebacterium glutamicum, pp. 215–240. Edited by L. Eggeling & M. Bott. Boca Raton, FL: CRC Press.
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.020388-0
Loading
/content/journal/micro/10.1099/mic.0.020388-0
Loading

Data & Media loading...

Supplements

vol. , part 1, pp. 150 - 164

[PDF file](102 KB)



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error