1887

Abstract

Years of research have shown us that unicellular organisms do not exist entirely in isolation, but rather that they are capable of an altogether far more sociable way of living. Single cells produce, receive and interpret signals, coordinating and changing their behaviour according to the information received. Although this cell–cell communication has long been considered the norm in the bacterial world, an increasing body of knowledge is demonstrating that single-celled eukaryotic parasites also maintain active social lives. This communication can drive parasite development, facilitate the invasion of new niches and, ultimately, influence infection outcome. In this review, I present the evidence for cell–cell communication during the life cycle of the African trypanosomes, from their mammalian hosts to their insect vectors, and reflect on the many remaining unanswered questions in this fascinating field.

Funding
This study was supported by the:
  • Wellcome Trust (Award 221717/Z/20/Z)
    • Principle Award Recipient: NotApplicable
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.001388
2023-08-29
2024-05-04
Loading full text...

Full text loading...

/deliver/fulltext/micro/169/8/mic001388.html?itemId=/content/journal/micro/10.1099/mic.0.001388&mimeType=html&fmt=ahah

References

  1. Claessen D, Rozen DE, Kuipers OP, Søgaard-Andersen L, van Wezel GP. Bacterial solutions to multicellularity: a tale of biofilms, filaments and fruiting bodies. Nat Rev Microbiol 2014; 12:115–124 [View Article] [PubMed]
    [Google Scholar]
  2. Shapiro JA. Thinking about bacterial populations as multicellular organisms. Annu Rev Microbiol 1998; 52:81–104 [View Article] [PubMed]
    [Google Scholar]
  3. Duddy OP, Bassler BL. Quorum sensing across bacterial and viral domains. PLoS Pathog 2021; 17:e1009074 [View Article] [PubMed]
    [Google Scholar]
  4. Kristjanson PM, Swallow BM, Rowlands GJ, Kruska RL, de Leeuw PN. Measuring the costs of African animal trypanosomosis, the potential benefits of control and returns to research. Agric Syst 1999; 59:79–98 [View Article]
    [Google Scholar]
  5. Desquesnes M, Dia ML. Trypanosoma vivax: mechanical transmission in cattle by one of the most common African tabanids, Atylotus agrestis. Exp Parasitol 2003; 103:35–43 [View Article] [PubMed]
    [Google Scholar]
  6. Desquesnes M, Dia ML. Mechanical transmission of Trypanosoma congolense in cattle by the African tabanid Atylotus agrestis. Exp Parasitol 2003; 105:226–231 [View Article] [PubMed]
    [Google Scholar]
  7. Mihok S, Maramba O, Munyoki E, Kagoiya J. Mechanical transmission of Trypanosoma spp. by African Stomoxyinae (Diptera: Muscidae). Trop Med Parasitol 1995; 46:103–105 [PubMed]
    [Google Scholar]
  8. Moloo SK, Kabata JM, Gitire NM. Study on the mechanical transmission by tsetse fly Glossina morsitans centralis of Trypanosoma vivax, T. congolense or T. brucei brucei to goats. Acta Trop 2000; 74:105–108 [View Article] [PubMed]
    [Google Scholar]
  9. Abisado RG, Benomar S, Klaus JR, Dandekar AA, Chandler JR. Bacterial quorum sensing and microbial community interactions. mBio 2018; 9:e01749-18 [View Article] [PubMed]
    [Google Scholar]
  10. Padder SA, Prasad R, Shah AH. Quorum sensing: a less known mode of communication among fungi. Microbiol Res 2018; 210:51–58 [View Article] [PubMed]
    [Google Scholar]
  11. MacGregor P, Savill NJ, Hall D, Matthews KR. Transmission stages dominate trypanosome within-host dynamics during chronic infections. Cell Host Microbe 2011; 9:310–318 [View Article] [PubMed]
    [Google Scholar]
  12. Hamm B, Schindler A, Mecke D, Duszenko M. Differentiation of Trypanosoma brucei bloodstream trypomastigotes from long slender to short stumpy-like forms in axenic culture. Mol Biochem Parasitol 1990; 40:13–22 [View Article] [PubMed]
    [Google Scholar]
  13. Reuner B, Vassella E, Yutzy B, Boshart M. Cell density triggers slender to stumpy differentiation of Trypanosoma brucei bloodstream forms in culture. Mol Biochem Parasitol 1997; 90:269–280 [View Article] [PubMed]
    [Google Scholar]
  14. Vassella E, Reuner B, Yutzy B, Boshart M. Differentiation of African trypanosomes is controlled by a density sensing mechanism which signals cell cycle arrest via the cAMP pathway. J Cell Sci 1997; 110:2661–2671 [View Article] [PubMed]
    [Google Scholar]
  15. Shapiro SZ, Naessens J, Liesegang B, Moloo SK, Magondu J. Analysis by flow cytometry of DNA synthesis during the life cycle of African trypanosomes. Acta Trop 1984; 41:313–323 [PubMed]
    [Google Scholar]
  16. Trindade S, De Niz M, Costa-Sequeira M, Bizarra-Rebelo T, Bento F et al. Slow growing behavior in African trypanosomes during adipose tissue colonization. Nat Commun 2022; 13:7548 [View Article] [PubMed]
    [Google Scholar]
  17. Matthews KR. Trypanosome signaling-quorum sensing. Annu Rev Microbiol 2021; 75:495–514 [View Article] [PubMed]
    [Google Scholar]
  18. Schuster S, Lisack J, Subota I, Zimmermann H, Reuter C et al. Unexpected plasticity in the life cycle of Trypanosoma brucei. eLife 2021; 10:e66028 [View Article] [PubMed]
    [Google Scholar]
  19. Batram C, Jones NG, Janzen CJ, Markert SM, Engstler M. Expression site attenuation mechanistically links antigenic variation and development in Trypanosoma brucei. eLife 2014; 3:e02324 [View Article] [PubMed]
    [Google Scholar]
  20. Matthews KR, Larcombe S. Comment on “Unexpected plasticity in the life cycle of Trypanosoma brucei.”. eLife 2022; 11:e74985 [View Article] [PubMed]
    [Google Scholar]
  21. Lisack J, Morriswood B, Engstler M. Response to comment on “Unexpected plasticity in the life cycle of Trypanosoma Brucei.”. eLife 2022; 11:e75922 [View Article] [PubMed]
    [Google Scholar]
  22. Rojas F, Silvester E, Young J, Milne R, Tettey M et al. Oligopeptide signaling through TbGPR89 drives Trypanosome quorum sensing. Cell 2019; 176:306–317 [View Article] [PubMed]
    [Google Scholar]
  23. Tettey MD, Rojas F, Matthews KR. Extracellular release of two peptidases dominates generation of the Trypanosome quorum-sensing signal. Nat Commun 2022; 13:3322 [View Article] [PubMed]
    [Google Scholar]
  24. Creek DJ, Nijagal B, Kim D-H, Rojas F, Matthews KR et al. Metabolomics guides rational development of a simplified cell culture medium for drug screening against Trypanosoma brucei. Antimicrob Agents Chemother 2013; 57:2768–2779 [View Article] [PubMed]
    [Google Scholar]
  25. Vincent IM, Daly R, Courtioux B, Cattanach AM, Biéler S et al. Metabolomics identifies multiple candidate biomarkers to diagnose and stage human African Trypanosomiasis. PLoS Negl Trop Dis 2016; 10:e0005140 [View Article] [PubMed]
    [Google Scholar]
  26. Dean S, Marchetti R, Kirk K, Matthews KR. A surface transporter family conveys the trypanosome differentiation signal. Nature 2009; 459:213–217 [View Article] [PubMed]
    [Google Scholar]
  27. Atyame Nten CM, Sommerer N, Rofidal V, Hirtz C, Rossignol M et al. Excreted/secreted proteins from trypanosome procyclic strains. J Biomed Biotechnol 2010; 2010:212817 [View Article] [PubMed]
    [Google Scholar]
  28. Bastos IMD, Motta FN, Charneau S, Santana JM, Dubost L et al. Prolyl oligopeptidase of Trypanosoma brucei hydrolyzes native collagen, peptide hormones and is active in the plasma of infected mice. Microbes Infect 2010; 12:457–466 [View Article] [PubMed]
    [Google Scholar]
  29. Bossard G, Cuny G, Geiger A. Secreted proteases of Trypanosoma brucei gambiense: possible targets for sleeping sickness control?. Biofactors 2013; 39:407–414 [View Article] [PubMed]
    [Google Scholar]
  30. Garzón E, Holzmuller P, Bras-Gonçalves R, Vincendeau P, Cuny G et al. The Trypanosoma brucei gambiense secretome impairs lipopolysaccharide-induced maturation, cytokine production, and allostimulatory capacity of dendritic cells. Infect Immun 2013; 81:3300–3308 [View Article] [PubMed]
    [Google Scholar]
  31. Geiger A, Hirtz C, Bécue T, Bellard E, Centeno D et al. Exocytosis and protein secretion in Trypanosoma. BMC Microbiol 2010; 10:20 [View Article] [PubMed]
    [Google Scholar]
  32. Knowles G, Black SJ, Whitelaw DD. Peptidase in the plasma of mice infected with Trypanosoma brucei brucei. Parasitology 1987; 95:291–300 [View Article] [PubMed]
    [Google Scholar]
  33. Morty RE, Lonsdale-Eccles JD, Mentele R, Auerswald EA, Coetzer TH. Trypanosome-derived oligopeptidase B is released into the plasma of infected rodents, where it persists and retains full catalytic activity. Infect Immun 2001; 69:2757–2761 [View Article] [PubMed]
    [Google Scholar]
  34. Okenu DM, Opara KN, Nwuba RI, Nwagwu M. Purification and characterisation of an extracellularly released protease of Trypanosoma brucei. Parasitol Res 1999; 85:424–428 [View Article] [PubMed]
    [Google Scholar]
  35. Tetaert D, Soudan B, Huet-Duvillier G, Degand P, Boersma A. Unusual cleavage of peptidic hormones generated by trypanosome enzymes released in infested rat serum. Int J Pept Protein Res 1993; 41:147–152 [View Article] [PubMed]
    [Google Scholar]
  36. Morty RE, Bulau P, Pellé R, Wilk S, Abe K. Pyroglutamyl peptidase type I from Trypanosoma brucei: a new virulence factor from African trypanosomes that de-blocks regulatory peptides in the plasma of infected hosts. Biochem J 2006; 394:635–645 [View Article] [PubMed]
    [Google Scholar]
  37. Moss CX, Brown E, Hamilton A, Van der Veken P, Augustyns K et al. An essential signal peptide peptidase identified in an RNAi screen of serine peptidases of Trypanosoma brucei. PLoS One 2015; 10:e0123241 [View Article] [PubMed]
    [Google Scholar]
  38. Morty RE, Shih AY, Fülöp V, Andrews NW. Identification of the reactive cysteine residues in oligopeptidase B from Trypanosoma brucei. FEBS Lett 2005; 579:2191–2196 [View Article] [PubMed]
    [Google Scholar]
  39. Rojas F, Cayla M, Matthews KR. Basement membrane proteins as a substrate for efficient Trypanosoma brucei differentiation in vitro. PLoS Negl Trop Dis 2021; 15:e0009284 [View Article] [PubMed]
    [Google Scholar]
  40. Roy A, Kucukural A, Zhang Y. I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc 2010; 5:725–738 [View Article] [PubMed]
    [Google Scholar]
  41. Yang J, Yan R, Roy A, Xu D, Poisson J et al. The I-TASSER Suite: protein structure and function prediction. Nat Methods 2015; 12:7–8 [View Article] [PubMed]
    [Google Scholar]
  42. Zhang Y. I-TASSER server for protein 3D structure prediction. BMC Bioinformatics 2008; 9:40 [View Article] [PubMed]
    [Google Scholar]
  43. Shiraga T, Miyamoto K, Tanaka H, Yamamoto H, Taketani Y et al. Cellular and molecular mechanisms of dietary regulation on rat intestinal H+/Peptide transporter PepT1. Gastroenterology 1999; 116:354–362 [View Article] [PubMed]
    [Google Scholar]
  44. Wang C-Y, Liu S, Xie X-N, Tan Z-R. Regulation profile of the intestinal peptide transporter 1 (PepT1). Drug Des Devel Ther 2017; 11:3511–3517 [View Article] [PubMed]
    [Google Scholar]
  45. Rojas F, Matthews KR. Quorum sensing in African trypanosomes. Curr Opin Microbiol 2019; 52:124–129 [View Article] [PubMed]
    [Google Scholar]
  46. Mony BM, MacGregor P, Ivens A, Rojas F, Cowton A et al. Genome-wide dissection of the quorum sensing signalling pathway in Trypanosoma brucei. Nature 2014; 505:681–685 [View Article] [PubMed]
    [Google Scholar]
  47. Breidbach T, Ngazoa E, Steverding D. Trypanosoma brucei: in vitro slender-to-stumpy differentiation of culture-adapted, monomorphic bloodstream forms. Exp Parasitol 2002; 101:223–230 [View Article] [PubMed]
    [Google Scholar]
  48. McDonald L, Cayla M, Ivens A, Mony BM, MacGregor P et al. Non-linear hierarchy of the quorum sensing signalling pathway in bloodstream form African trypanosomes. PLoS Pathog 2018; 14:e1007145 [View Article] [PubMed]
    [Google Scholar]
  49. Saldivia M, Barquilla A, Bart JM, Diaz-González R, Hall MN et al. Target of rapamycin (TOR) kinase in Trypanosoma brucei: an extended family. Biochem Soc Trans 2013; 41:934–938 [View Article] [PubMed]
    [Google Scholar]
  50. Jones NG, Thomas EB, Brown E, Dickens NJ, Hammarton TC et al. Regulators of Trypanosoma brucei cell cycle progression and differentiation identified using a kinome-wide RNAi screen. PLoS Pathog 2014; 10:e1003886 [View Article] [PubMed]
    [Google Scholar]
  51. Vassella E, Krämer R, Turner CM, Wankell M, Modes C et al. Deletion of a novel protein kinase with PX and FYVE-related domains increases the rate of differentiation of Trypanosoma brucei. Mol Microbiol 2001; 41:33–46 [View Article] [PubMed]
    [Google Scholar]
  52. Cayla M, McDonald L, MacGregor P, Matthews K. An atypical DYRK kinase connects quorum-sensing with posttranscriptional gene regulation in Trypanosoma brucei. eLife 2020; 9:e51620 [View Article] [PubMed]
    [Google Scholar]
  53. Saldivia M, Ceballos-Pérez G, Bart J-M, Navarro M. The AMPKα1 pathway positively regulates the developmental transition from proliferation to quiescence in Trypanosoma brucei. Cell Rep 2016; 17:660–670 [View Article] [PubMed]
    [Google Scholar]
  54. Guegan F, Rajan KS, Bento F, Pinto-Neves D, Sequeira M et al. A long noncoding RNA promotes parasite differentiation in African trypanosomes. Sci Adv 2022; 8:eabn2706 [View Article] [PubMed]
    [Google Scholar]
  55. Harshey RM. Bacterial motility on a surface: many ways to a common goal. Annu Rev Microbiol 2003; 57:249–273 [View Article] [PubMed]
    [Google Scholar]
  56. Oberholzer M, Lopez MA, McLelland BT, Hill KL. Social motility in african trypanosomes. PLoS Pathog 2010; 6:e1000739 [View Article] [PubMed]
    [Google Scholar]
  57. Castillo-Juárez I, Maeda T, Mandujano-Tinoco EA, Tomás M, Pérez-Eretza B et al. Role of quorum sensing in bacterial infections. World J Clin Cases 2015; 3:575–598 [View Article] [PubMed]
    [Google Scholar]
  58. Köhler T, Curty LK, Barja F, van Delden C, Pechère JC. Swarming of Pseudomonas aeruginosa is dependent on cell-to-cell signaling and requires flagella and pili. J Bacteriol 2000; 182:5990–5996 [View Article] [PubMed]
    [Google Scholar]
  59. Roditi I, Schwarz H, Pearson TW, Beecroft RP, Liu MK et al. Procyclin gene expression and loss of the variant surface glycoprotein during differentiation of Trypanosoma brucei. J Cell Biol 1989; 108:737–746 [View Article] [PubMed]
    [Google Scholar]
  60. Roditi I, Carrington M, Turner M. Expression of a polypeptide containing a dipeptide repeat is confined to the insect stage of Trypanosoma brucei. Nature 1987; 325:272–274 [View Article] [PubMed]
    [Google Scholar]
  61. Mowatt MR, Clayton CE. Developmental regulation of a novel repetitive protein of Trypanosoma brucei. Mol Cell Biol 1987; 7:2838–2844 [View Article] [PubMed]
    [Google Scholar]
  62. Mowatt MR, Clayton CE. Polymorphism in the procyclic acidic repetitive protein gene family of Trypanosoma brucei. Mol Cell Biol 1988; 8:4055–4062 [View Article] [PubMed]
    [Google Scholar]
  63. Rose C, Casas-Sánchez A, Dyer NA, Solórzano C, Beckett AJ et al. Trypanosoma brucei colonizes the tsetse gut via an immature peritrophic matrix in the proventriculus. Nat Microbiol 2020; 5:909–916 [View Article] [PubMed]
    [Google Scholar]
  64. Acosta-Serrano A, Vassella E, Liniger M, Kunz Renggli C, Brun R et al. The surface coat of procyclic Trypanosoma brucei: programmed expression and proteolytic cleavage of procyclin in the tsetse fly. Proc Natl Acad Sci U S A 2001; 98:1513–1518 [View Article] [PubMed]
    [Google Scholar]
  65. Imhof S, Knüsel S, Gunasekera K, Vu XL, Roditi I. Social motility of African trypanosomes is a property of a distinct life-cycle stage that occurs early in tsetse fly transmission. PLoS Pathog 2014; 10:e1004493 [View Article] [PubMed]
    [Google Scholar]
  66. Imhof S, Vu XL, Bütikofer P, Roditi I. A glycosylation mutant of Trypanosoma brucei links social motility defects In vitro to impaired colonization of Tsetse flies In vivo. Eukaryot Cell 2015; 14:588–592 [View Article] [PubMed]
    [Google Scholar]
  67. Hutchings NR, Donelson JE, Hill KL. Trypanin is a cytoskeletal linker protein and is required for cell motility in African trypanosomes. J Cell Biol 2002; 156:867–877 [View Article] [PubMed]
    [Google Scholar]
  68. Vassella E, Den Abbeele JV, Bütikofer P, Renggli CK, Furger A et al. A major surface glycoprotein of Trypanosoma brucei is expressed transiently during development and can be regulated post-transcriptionally by glycerol or hypoxia. Genes Dev 2000; 14:615–626 [PubMed]
    [Google Scholar]
  69. Morand S, Renggli CK, Roditi I, Vassella E. MAP kinase kinase 1 (MKK1) is essential for transmission of Trypanosoma brucei by Glossina morsitans. Mol Biochem Parasitol 2012; 186:73–76 [View Article] [PubMed]
    [Google Scholar]
  70. Fragoso CM, Schumann Burkard G, Oberle M, Renggli CK, Hilzinger K et al. PSSA-2, a membrane-spanning phosphoprotein of Trypanosoma brucei, is required for efficient maturation of infection. PLoS One 2009; 4:e7074 [View Article] [PubMed]
    [Google Scholar]
  71. Salmon D. Adenylate cyclases of Trypanosoma brucei, environmental sensors and controllers of host innate immune response. Pathogens 2018; 7:48 [View Article] [PubMed]
    [Google Scholar]
  72. Saada EA, Kabututu ZP, Lopez M, Shimogawa MM, Langousis G et al. Insect stage-specific receptor adenylate cyclases are localized to distinct subdomains of the Trypanosoma brucei flagellar membrane. Eukaryot Cell 2014; 13:1064–1076 [View Article] [PubMed]
    [Google Scholar]
  73. Lopez MA, Saada EA, Hill KL. Insect stage-specific adenylate cyclases regulate social motility in African trypanosomes. Eukaryot Cell 2015; 14:104–112 [View Article] [PubMed]
    [Google Scholar]
  74. Oberholzer M, Saada EA, Hill KL. Cyclic AMP regulates social behavior in African Trypanosomes. mBio 2015; 6:e01954-14 [View Article] [PubMed]
    [Google Scholar]
  75. Shaw S, DeMarco SF, Rehmann R, Wenzler T, Florini F et al. Flagellar cAMP signaling controls trypanosome progression through host tissues. Nat Commun 2019; 10:803 [View Article] [PubMed]
    [Google Scholar]
  76. Shaw S, Knüsel S, Abbühl D, Naguleswaran A, Etzensperger R et al. Cyclic AMP signalling and glucose metabolism mediate pH taxis by African trypanosomes. Nat Commun 2022; 13:603 [View Article] [PubMed]
    [Google Scholar]
  77. DeMarco SF, Saada EA, Lopez MA, Hill KL. Identification of positive chemotaxis in the protozoan pathogen Trypanosoma brucei. mSphere 2020; 5:e00685-20 [View Article] [PubMed]
    [Google Scholar]
  78. Gould MK, Bachmaier S, Ali JAM, Alsford S, Tagoe DNA et al. Cyclic AMP effectors in African trypanosomes revealed by genome-scale RNA interference library screening for resistance to the phosphodiesterase inhibitor CpdA. Antimicrob Agents Chemother 2013; 57:4882–4893 [View Article] [PubMed]
    [Google Scholar]
  79. Bachmaier S, Giacomelli G, Calvo-Alvarez E, Vieira LR, Van Den Abbeele J et al. A multi-adenylate cyclase regulator at the flagellar tip controls African trypanosome transmission. Nat Commun 2022; 13:5445 [View Article] [PubMed]
    [Google Scholar]
  80. Knüsel S, Jenni A, Benninger M, Bütikofer P, Roditi I. Persistence of Trypanosoma brucei as early procyclic forms and social motility are dependent on glycosylphosphatidylinositol transamidase. Mol Microbiol 2022; 117:802–817 [View Article] [PubMed]
    [Google Scholar]
  81. Schuster S, Krüger T, Subota I, Thusek S, Rotureau B et al. Developmental adaptations of trypanosome motility to the tsetse fly host environments unravel a multifaceted in vivo microswimmer system. eLife 2017; 6:e27656 [View Article] [PubMed]
    [Google Scholar]
  82. Davis DM, Sowinski S. Membrane nanotubes: dynamic long-distance connections between animal cells. Nat Rev Mol Cell Biol 2008; 9:431–436 [View Article] [PubMed]
    [Google Scholar]
  83. Matkó J, Tóth EA. Membrane nanotubes are ancient machinery for cell-to-cell communication and transport. Their interference with the immune system. Biol Futur 2021; 72:25–36 [View Article] [PubMed]
    [Google Scholar]
  84. van Niel G, Carter DRF, Clayton A, Lambert DW, Raposo G et al. Challenges and directions in studying cell-cell communication by extracellular vesicles. Nat Rev Mol Cell Biol 2022; 23:369–382 [View Article] [PubMed]
    [Google Scholar]
  85. Colombo M, Raposo G, Théry C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol 2014; 30:255–289 [View Article] [PubMed]
    [Google Scholar]
  86. Ståhl A-L, Johansson K, Mossberg M, Kahn R, Karpman D. Exosomes and microvesicles in normal physiology, pathophysiology, and renal diseases. Pediatr Nephrol 2019; 34:11–30 [View Article] [PubMed]
    [Google Scholar]
  87. Vickerman K, Luckins AG. Localization of variable antigens in the surface coat of Trypanosoma brucei using ferritin conjugated antibody. Nature 1969; 224:1125–1126 [View Article] [PubMed]
    [Google Scholar]
  88. Ellis DS, Ormerod WE, Lumsden WH. Filaments of Trypanosoma brucei: some notes on differences in origin and structure in two strains of Trypanosoma (Trypanozoon) brucei rhodesiense. Acta Trop 1976; 33:151–168 [PubMed]
    [Google Scholar]
  89. Frevert U, Reinwald E. Formation of filopodia in Trypanosoma congolense by crosslinking the variant surface antigen. J Ultrastruct Mol Struct Res 1988; 99:124–136 [View Article] [PubMed]
    [Google Scholar]
  90. Szempruch AJ, Sykes SE, Kieft R, Dennison L, Becker AC et al. Extracellular vesicles from Trypanosoma brucei mediate virulence factor transfer and cause host anemia. Cell 2016; 164:246–257 [View Article] [PubMed]
    [Google Scholar]
  91. Olver C, Vidal M. Proteomic analysis of secreted exosomes. Subcell Biochem 2007; 43:99–131 [View Article] [PubMed]
    [Google Scholar]
  92. Salmon D, Vanwalleghem G, Morias Y, Denoeud J, Krumbholz C et al. Adenylate cyclases of Trypanosoma brucei inhibit the innate immune response of the host. Science 2012; 337:463–466 [View Article] [PubMed]
    [Google Scholar]
  93. Proto WR, Castanys-Munoz E, Black A, Tetley L, Moss CX et al. Trypanosoma brucei metacaspase 4 is a pseudopeptidase and a virulence factor. J Biol Chem 2011; 286:39914–39925 [View Article] [PubMed]
    [Google Scholar]
  94. Subramanya S, Hardin CF, Steverding D, Mensa-Wilmot K. Glycosylphosphatidylinositol-specific phospholipase C regulates transferrin endocytosis in the African trypanosome. Biochem J 2009; 417:685–694 [View Article] [PubMed]
    [Google Scholar]
  95. Webb H, Carnall N, Vanhamme L, Rolin S, Van Den Abbeele J et al. The GPI-phospholipase C of Trypanosoma brucei is nonessential but influences parasitemia in mice. J Cell Biol 1997; 139:103–114 [View Article] [PubMed]
    [Google Scholar]
  96. De Greef C, Hamers R. The serum resistance-associated (SRA) gene of Trypanosoma brucei rhodesiense encodes a variant surface glycoprotein-like protein. Mol Biochem Parasitol 1994; 68:277–284 [View Article] [PubMed]
    [Google Scholar]
  97. Xong HV, Vanhamme L, Chamekh M, Chimfwembe CE, Van Den Abbeele J et al. A VSG expression site-associated gene confers resistance to human serum in Trypanosoma rhodesiense. Cell 1998; 95:839–846 [View Article] [PubMed]
    [Google Scholar]
  98. Truc P, Büscher P, Cuny G, Gonzatti MI, Jannin J et al. Atypical human infections by animal trypanosomes. PLoS Negl Trop Dis 2013; 7:e2256 [View Article] [PubMed]
    [Google Scholar]
  99. Gibson W, Peacock L, Ferris V, Fischer K, Livingstone J et al. Genetic recombination between human and animal parasites creates novel strains of human pathogen. PLoS Negl Trop Dis 2015; 9:e0003665 [View Article] [PubMed]
    [Google Scholar]
  100. Boothroyd JC, Cross GA. Transcripts coding for variant surface glycoproteins of Trypanosoma brucei have a short, identical exon at their 5’ end. Gene 1982; 20:281–289 [View Article] [PubMed]
    [Google Scholar]
  101. Campbell DA, Thornton DA, Boothroyd JC. Apparent discontinuous transcription of Trypanosoma brucei variant surface antigen genes. Nature 1984; 311:350–355 [View Article] [PubMed]
    [Google Scholar]
  102. Matthews KR, Tschudi C, Ullu E. A common pyrimidine-rich motif governs trans-splicing and polyadenylation of tubulin polycistronic pre-mRNA in trypanosomes. Genes Dev 1994; 8:491–501 [View Article] [PubMed]
    [Google Scholar]
  103. Milhausen M, Nelson RG, Sather S, Selkirk M, Agabian N. Identification of a small RNA containing the trypanosome spliced leader: a donor of shared 5’ sequences of trypanosomatid mRNAs?. Cell 1984; 38:721–729 [View Article] [PubMed]
    [Google Scholar]
  104. Eliaz D, Kannan S, Shaked H, Arvatz G, Tkacz ID et al. Exosome secretion affects social motility in Trypanosoma brucei. PLoS Pathog 2017; 13:e1006245 [View Article] [PubMed]
    [Google Scholar]
  105. Moon S, Janssens I, Kim KH, Stijlemans B, Magez S et al. Detrimental effect of Trypanosoma brucei brucei infection on memory B cells and host ability to recall protective B-cell responses. J Infect Dis 2022; 226:528–540 [View Article] [PubMed]
    [Google Scholar]
  106. Dias-Guerreiro T, Palma-Marques J, Mourata-Gonçalves P, Alexandre-Pires G, Valério-Bolas A et al. African Trypanosomiasis: extracellular vesicles shed by Trypanosoma brucei brucei manipulate host mononuclear cells. Biomedicines 2021; 9:1056 [View Article] [PubMed]
    [Google Scholar]
  107. Mabille D, Dirkx L, Thys S, Vermeersch M, Montenye D et al. Impact of pulmonary African trypanosomes on the immunology and function of the lung. Nat Commun 2022; 13:7083 [View Article] [PubMed]
    [Google Scholar]
  108. Nielsen MS, Axelsen LN, Sorgen PL, Verma V, Delmar M et al. Gap junctions. Compr Physiol 2012; 2:1981–2035 [View Article] [PubMed]
    [Google Scholar]
  109. Li ZP, Paterlini A, Glavier M, Bayer EM. Intercellular trafficking via plasmodesmata: molecular layers of complexity. Cell Mol Life Sci 2021; 78:799–816 [View Article] [PubMed]
    [Google Scholar]
  110. Sager RE, Lee J-Y. Plasmodesmata at a glance. J Cell Sci 2018; 131:jcs209346 [View Article] [PubMed]
    [Google Scholar]
  111. Ducret A, Fleuchot B, Bergam P, Mignot T. Direct live imaging of cell-cell protein transfer by transient outer membrane fusion in Myxococcus xanthus. eLife 2013; 2:e00868 [View Article] [PubMed]
    [Google Scholar]
  112. Sah GP, Wall D. Kin recognition and outer membrane exchange (OME) in myxobacteria. Curr Opin Microbiol 2020; 56:81–88 [View Article] [PubMed]
    [Google Scholar]
  113. Imhof S, Fragoso C, Hemphill A, von Schubert C, Li D et al. Flagellar membrane fusion and protein exchange in trypanosomes; a new form of cell-cell communication?. F1000Res 2016; 5:682 [View Article] [PubMed]
    [Google Scholar]
  114. Morrison LJ, Steketee PC, Tettey MD, Matthews KR. Pathogenicity and virulence of African trypanosomes: from laboratory models to clinically relevant hosts. Virulence 2023; 14:2150445 [View Article] [PubMed]
    [Google Scholar]
  115. Venter F, Matthews KR, Silvester E. Parasite co-infection: an ecological, molecular and experimental perspective. Proc Biol Sci 2022; 289:20212155 [View Article] [PubMed]
    [Google Scholar]
  116. Anderson NE, Mubanga J, Fevre EM, Picozzi K, Eisler MC et al. Characterisation of the wildlife reservoir community for human and animal trypanosomiasis in the Luangwa Valley, Zambia. PLoS Negl Trop Dis 2011; 5:e1211 [View Article] [PubMed]
    [Google Scholar]
  117. Balmer O, Caccone A. Multiple-strain infections of Trypanosoma brucei across Africa. Acta Trop 2008; 107:275–279 [View Article] [PubMed]
    [Google Scholar]
  118. Kamdem CN, Tiofack AAZ, Mewamba EM, Ofon EA, Gomseu EBD et al. Molecular identification of different trypanosome species in tsetse flies caught in the wildlife reserve of Santchou in the western region of Cameroon. Parasitol Res 2020; 119:805–813 [View Article] [PubMed]
    [Google Scholar]
  119. Kasozi KI, Zirintunda G, Ssempijja F, Buyinza B, Alzahrani KJ et al. Epidemiology of Trypanosomiasis in wildlife-implications for humans at the wildlife interface in Africa. Front Vet Sci 2021; 8:621699 [View Article] [PubMed]
    [Google Scholar]
  120. Signaboubo D, Payne VK, Moussa IMA, Hassane HM, Berger P et al. Diversity of tsetse flies and trypanosome species circulating in the area of Lake Iro in southeastern Chad. Parasit Vectors 2021; 14:293 [View Article] [PubMed]
    [Google Scholar]
  121. Thumbi SM, Jung’a JO, Mosi RO, McOdimba FA. Spatial distribution of African animal Trypanosomiasis in Suba and Teso districts in Western Kenya. BMC Res Notes 2010; 3:6 [View Article] [PubMed]
    [Google Scholar]
  122. Dwinger RH, Luckins AG, Murray M, Rae P, Moloo SK. Interference between different serodemes of Trypanosoma congolense in the establishment of superinfections in goats following transmission by tsetse. Parasite Immunol 1986; 8:293–305 [View Article] [PubMed]
    [Google Scholar]
  123. Morrison WI, Wells PW, Moloo SK, Paris J, Murray M. Interference in the establishment of superinfections with Trypanosoma congolense in cattle. J Parasitol 1982; 68:755–764 [PubMed]
    [Google Scholar]
  124. Luckins AG, Gray AR. Interference with anti-trypanosome immune responses in rabbits infected with cyclically-transmitted Trypanosoma congolense. Parasite Immunol 1983; 5:547–556 [View Article] [PubMed]
    [Google Scholar]
  125. Dwinger RH, Murray M, Luckins AG, Rae PF, Moloo SK. Interference in the establishment of tsetse-transmitted Trypanosoma congolense, T. brucei or T. vivax superinfections in goats already infected with T. congolense or T. vivax. Vet Parasitol 1989; 30:177–189 [View Article] [PubMed]
    [Google Scholar]
  126. Balmer O, Stearns SC, Schötzau A, Brun R. Intraspecific competition between co-infecting parasite strains enhances host survival in African trypanosomes. Ecology 2009; 90:3367–3378 [View Article] [PubMed]
    [Google Scholar]
  127. Pinchbeck GL, Morrison LJ, Tait A, Langford J, Meehan L et al. Trypanosomosis in the Gambia: prevalence in working horses and donkeys detected by whole genome amplification and PCR, and evidence for interactions between trypanosome species. BMC Vet Res 2008; 4:7 [View Article] [PubMed]
    [Google Scholar]
  128. Silvester E, Young J, Ivens A, Matthews KR. Interspecies quorum sensing in co-infections can manipulate trypanosome transmission potential. Nat Microbiol 2017; 2:1471–1479 [View Article] [PubMed]
    [Google Scholar]
  129. Silva Pereira S, Trindade S, De Niz M, Figueiredo LM. Correction to “Tissue tropism in parasitic diseases.”. Open Biol 2019; 9:190036 [View Article] [PubMed]
    [Google Scholar]
  130. Roditi I. The languages of parasite communication. Mol Biochem Parasitol 2016; 208:16–22 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.001388
Loading
/content/journal/micro/10.1099/mic.0.001388
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error