1887

Abstract

Unprecedented insights into the biology and functions of bacteria have been and continue to be gained through studying bacterial secretion systems in isolation. This method, however, results in our understanding of the systems being primarily based on the idea that they operate independently, ignoring the subtleties of downstream interconnections. Gram-negative bacteria are naturally able to adapt to and navigate their frequently varied and dynamic surroundings, mostly because of the covert connections between secretion systems. Therefore, to comprehend some of the linked downstream repercussions for organisms that follow this discourse, it is vital to have mechanistic insights into how the intersecretion system functions in bacterial rivalry, virulence, and survival, among other things. To that purpose, this paper discusses a few key instances of molecular antagonistic and interdependent relationships between bacterial secretion systems and their produced functional products.

  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. The Microbiology Society waived the open access fees for this article.
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.001326
2023-04-21
2024-05-21
Loading full text...

Full text loading...

/deliver/fulltext/micro/169/4/mic001326.html?itemId=/content/journal/micro/10.1099/mic.0.001326&mimeType=html&fmt=ahah

References

  1. Green ER, Mecsas J. Bacterial secretion systems: an overview. Virulence Mechan Bacterial Pathogens 2016213–239
    [Google Scholar]
  2. Costa TRD, Felisberto-Rodrigues C, Meir A, Prevost MS, Redzej A et al. Secretion systems in Gram-negative bacteria: structural and mechanistic insights. Nat Rev Microbiol 2015; 13:343–359 [View Article] [PubMed]
    [Google Scholar]
  3. Lynch JB, Alegado RA. Spheres of hope, packets of doom: the good and bad of outer membrane vesicles in interspecies and ecological dynamics. J Bacteriol 2017; 199:e00012–00017 [View Article] [PubMed]
    [Google Scholar]
  4. Bernal P, Llamas MA, Filloux A. Type VI secretion systems in plant-associated bacteria. Environ Microbiol 2018; 20:1–15 [View Article] [PubMed]
    [Google Scholar]
  5. Bowman L, Palmer T. The type VII secretion system of Staphylococcus. Annu Rev Microbiol 2021; 75:471–494 [PubMed]
    [Google Scholar]
  6. Bunduc CM, Fahrenkamp D, Wald J, Ummels R, Bitter W et al. Structure and dynamics of a mycobacterial type VII secretion system. Nature 2021; 593:445–448 [View Article] [PubMed]
    [Google Scholar]
  7. Filloux A. Bacterial protein secretion systems: game of types. Microbiology 2022; 168:001193 [View Article] [PubMed]
    [Google Scholar]
  8. Rivera-Calzada A, Famelis N, Llorca O, Geibel S. Type VII secretion systems: structure, functions and transport models. Nat Rev Microbiol 2021; 19:567–584 [View Article] [PubMed]
    [Google Scholar]
  9. Chang JH, Desveaux D, Creason AL. The ABCs and 123s of bacterial secretion systems in plant pathogenesis. Annu Rev Phytopathol 2014; 52:317–345 [View Article] [PubMed]
    [Google Scholar]
  10. Guerrero-Mandujano A, Hernández-Cortez C, Ibarra JA, Castro-Escarpulli G. The outer membrane vesicles: secretion system type zero. Traffic 2017; 18:425–432 [View Article] [PubMed]
    [Google Scholar]
  11. Bhoite S, van Gerven N, Chapman MR, Remaut H. Curli biogenesis: bacterial amyloid assembly by the type VIII secretion pathway. EcoSal Plus 2019; 8: [View Article] [PubMed]
    [Google Scholar]
  12. Christie PJ, Whitaker N, González-Rivera C. Mechanism and structure of the bacterial type IV secretion systems. Biochim Biophys Acta 2014; 1843:1578–1591 [View Article] [PubMed]
    [Google Scholar]
  13. Cianfanelli FR, Monlezun L, Coulthurst SJ. Aim, load, fire: the type VI secretion system, a bacterial Nanoweapon. Trends Microbiol 2016; 24:51–62 [View Article] [PubMed]
    [Google Scholar]
  14. Deng W, Marshall NC, Rowland JL, McCoy JM, Worrall LJ et al. Assembly, structure, function and regulation of type III secretion systems. Nat Rev Microbiol 2017; 15:323–337 [View Article] [PubMed]
    [Google Scholar]
  15. Grohmann E, Christie PJ, Waksman G, Backert S. Type IV secretion in Gram-negative and Gram-positive bacteria. Mol Microbiol 2018; 107:455–471 [View Article] [PubMed]
    [Google Scholar]
  16. Nivaskumar M, Francetic O. Type II secretion system: a magic beanstalk or a protein escalator. Biochim Biophys Acta 2014; 1843:1568–1577 [View Article] [PubMed]
    [Google Scholar]
  17. Palmer T, Finney AJ, Saha CK, Atkinson GC, Sargent F. A holin/peptidoglycan hydrolase-dependent protein secretion system. Mol Microbiol 2021; 115:345–355 [View Article] [PubMed]
    [Google Scholar]
  18. Thomas S, Holland IB, Schmitt L. The Type 1 secretion pathway - the hemolysin system and beyond. Biochim Biophys Acta 2014; 1843:1629–1641 [View Article] [PubMed]
    [Google Scholar]
  19. van Ulsen P, Zinner KM, Jong WSP, Luirink J. On display: autotransporter secretion and application. FEMS Microbiol Lett 2018; 365:fny165 [View Article] [PubMed]
    [Google Scholar]
  20. Galán JE, Waksman G. Protein-injection machines in bacteria. Cell 2018; 172:1306–1318 [View Article] [PubMed]
    [Google Scholar]
  21. García-Bayona L, Guo MS, Laub MT. Contact-dependent killing by Caulobacter crescentus via cell surface-associated, glycine zipper proteins. Elife 2017; 6:e24869 [View Article] [PubMed]
    [Google Scholar]
  22. Smith WPJ, Vettiger A, Winter J, Ryser T, Comstock LE et al. The evolution of the type VI secretion system as a disintegration weapon. PLoS Biol 2020; 18:e3000720 [View Article] [PubMed]
    [Google Scholar]
  23. Spitz O, Erenburg IN, Beer T, Kanonenberg K, Holland IB et al. Type I Secretion Systems-One Mechanism for All?. Microbiol Spectr 2019; 7:7 [View Article] [PubMed]
    [Google Scholar]
  24. Kanonenberg K, Schwarz CKW, Schmitt L. Type I secretion systems - a story of appendices. Res Microbiol 2013; 164:596–604 [View Article] [PubMed]
    [Google Scholar]
  25. Kanonenberg K, Spitz O, Erenburg IN, Beer T, Schmitt L. Type I secretion system-it takes three and a substrate. FEMS Microbiol Lett 2018; 365:fny094 [View Article] [PubMed]
    [Google Scholar]
  26. Büttner D, He SY. Type III protein secretion in plant pathogenic bacteria. Plant Physiol 2009; 150:1656–1664 [View Article] [PubMed]
    [Google Scholar]
  27. Durand E, Cambillau C, Cascales E, Journet L. VgrG, Tae, Tle, and beyond: the versatile arsenal of type VI secretion effectors. Trends Microbiol 2014; 22:498–507 [View Article] [PubMed]
    [Google Scholar]
  28. Galán JE, Lara-Tejero M, Marlovits TC, Wagner S. Bacterial type III secretion systems: specialized nanomachines for protein delivery into target cells. Annu Rev Microbiol 2014; 68:415–438 [View Article] [PubMed]
    [Google Scholar]
  29. Russell AB, Hood RD, Bui NK, LeRoux M, Vollmer W et al. Type VI secretion delivers bacteriolytic effectors to target cells. Nature 2011; 475:343–347 [View Article] [PubMed]
    [Google Scholar]
  30. Wagner S, Grin I, Malmsheimer S, Singh N, Torres-Vargas CE et al. Bacterial type III secretion systems: a complex device for the delivery of bacterial effector proteins into eukaryotic host cells. FEMS Microbiol Lett 2018; 365:fny201 [View Article] [PubMed]
    [Google Scholar]
  31. Borrero de Acuña JM, Bernal P. Plant holobiont interactions mediated by the type VI secretion system and the membrane vesicles: promising tools for a greener agriculture. Environ Microbiol 2021; 23:1830–1836 [View Article] [PubMed]
    [Google Scholar]
  32. Egan F, Barret M, O’Gara F. The SPI-1-like type III secretion system: more roles than you think. Front Plant Sci 2014; 5:34 [View Article] [PubMed]
    [Google Scholar]
  33. Hachani A, Wood TE, Filloux A. Type VI secretion and anti-host effectors. Curr Opin Microbiol 2016; 29:81–93 [View Article] [PubMed]
    [Google Scholar]
  34. Hu Y, Huang H, Cheng X, Shu X, White AP et al. A global survey of bacterial type III secretion systems and their effectors. Environ Microbiol 2017; 19:3879–3895 [View Article] [PubMed]
    [Google Scholar]
  35. Lucke M, Correa MG, Levy A. The role of secretion systems, effectors, and secondary metabolites of beneficial rhizobacteria in interactions with plants and microbes. Front Plant Sci 2020; 11: [View Article] [PubMed]
    [Google Scholar]
  36. Speare L, Cecere AG, Guckes KR, Smith S, Wollenberg MS et al. Bacterial symbionts use a type VI secretion system to eliminate competitors in their natural host. Proc Natl Acad Sci U S A 2018; 115:E8528–E8537 [View Article] [PubMed]
    [Google Scholar]
  37. Liu X, Cai J, Li X, Yu F, Wu D. Can bacterial type III effectors mediate pathogen-plant-microbiota ternary interactions?. Plant Cell Environ 2022; 45:5–11 [View Article] [PubMed]
    [Google Scholar]
  38. Coulthurst S. The type VI secretion system: a versatile bacterial weapon. Microbiology 2019; 165:503–515 [View Article] [PubMed]
    [Google Scholar]
  39. Lien Y-W, Lai E-M. Type VI secretion effectors: methodologies and biology. Front Cell Infect Microbiol 2017; 7:254 [View Article] [PubMed]
    [Google Scholar]
  40. Russell AB, Peterson SB, Mougous JD. Type VI secretion system effectors: poisons with a purpose. Nat Rev Microbiol 2014; 12:137–148 [View Article] [PubMed]
    [Google Scholar]
  41. Teschler JK, Jiménez-Siebert E, Jeckel H, Singh PK, Park JH et al. VxrB influences antagonism within biofilms by controlling competition through extracellular matrix production and type 6 secretion. mBio 2022; 13:e0188522 [View Article] [PubMed]
    [Google Scholar]
  42. Luo J, Chu X, Jie J, Sun Y, Guan Q et al. Acinetobacter baumannii kills fungi via a type VI DNase effector. mBio 2023; 14:e03420–03422 [View Article] [PubMed]
    [Google Scholar]
  43. Huddleston JR. Horizontal gene transfer in the human gastrointestinal tract: potential spread of antibiotic resistance genes. Infect Drug Resist 2014; 7:167–176 [View Article] [PubMed]
    [Google Scholar]
  44. Juhas M, Crook DW, Hood DW. Type IV secretion systems: tools of bacterial horizontal gene transfer and virulence. Cell Microbiol 2008; 10:2377–2386 [View Article] [PubMed]
    [Google Scholar]
  45. Bayer-Santos E, Cenens W, Matsuyama BY, Oka GU, Di Sessa G et al. The opportunistic pathogen Stenotrophomonas maltophilia utilizes a type IV secretion system for interbacterial killing. PLoS Pathog 2019; 15:e1007651 [View Article] [PubMed]
    [Google Scholar]
  46. Souza JAM, Baltazar L de M, Carregal VM, Gouveia-Eufrasio L, de Oliveira AG et al. Corrigendum: characterization of Aspergillus fumigatus extracellular vesicles and their effects on macrophages and neutrophils functions. Front Microbiol 2019; 10:2334 [View Article] [PubMed]
    [Google Scholar]
  47. Purtschert-Montenegro G, Cárcamo-Oyarce G, Pinto-Carbó M, Agnoli K, Bailly A et al. Pseudomonas putida mediates bacterial killing, biofilm invasion and biocontrol with a type IVB secretion system. Nat Microbiol 2022; 7:1547–1557 [View Article] [PubMed]
    [Google Scholar]
  48. Sheedlo MJ, Ohi MD, Lacy DB, Cover TL. Molecular architecture of bacterial type IV secretion systems. PLoS Pathog 2022; 18:e1010720 [View Article] [PubMed]
    [Google Scholar]
  49. Sato K, Naito M, Yukitake H, Hirakawa H, Shoji M et al. A protein secretion system linked to bacteroidete gliding motility and pathogenesis. Proc Natl Acad Sci U S A 2010; 107:276–281 [View Article] [PubMed]
    [Google Scholar]
  50. Veith PD, Glew MD, Gorasia DG, Reynolds EC. Type IX secretion: the generation of bacterial cell surface coatings involved in virulence, gliding motility and the degradation of complex biopolymers. Mol Microbiol 2017; 106:35–53 [View Article] [PubMed]
    [Google Scholar]
  51. Hamilton JJ, Marlow VL, Owen RA, Costa M de AA, Guo M et al. A holin and an endopeptidase are essential for chitinolytic protein secretion in Serratia marcescens. J Cell Biol 2014; 207:615–626 [View Article] [PubMed]
    [Google Scholar]
  52. Cianciotto NP, White RC. Expanding role of type II secretion in bacterial pathogenesis and beyond. Infect Immun 2017; 85:e00014–00017 [View Article] [PubMed]
    [Google Scholar]
  53. Gill S, Catchpole R, Forterre P. Extracellular membrane vesicles in the three domains of life and beyond. FEMS Microbiol Rev 2019; 43:273–303 [View Article] [PubMed]
    [Google Scholar]
  54. Bonnington KE, Kuehn MJ. Protein selection and export via outer membrane vesicles. Biochim Biophys Acta 2014; 1843:1612–1619 [View Article] [PubMed]
    [Google Scholar]
  55. Bomberger JM, Maceachran DP, Coutermarsh BA, Ye S, O’Toole GA et al. Long-distance delivery of bacterial virulence factors by Pseudomonas aeruginosa outer membrane vesicles. PLoS Pathog 2009; 5:e1000382 [View Article] [PubMed]
    [Google Scholar]
  56. Toyofuku M, Nomura N, Eberl L. Types and origins of bacterial membrane vesicles. Nat Rev Microbiol 2019; 17:13–24 [View Article] [PubMed]
    [Google Scholar]
  57. McMillan HM, Kuehn MJ. The extracellular vesicle generation paradox: a bacterial point of view. EMBO J 2021; 40:e108174 [View Article] [PubMed]
    [Google Scholar]
  58. Schertzer JW, Whiteley M. A bilayer-couple model of bacterial outer membrane vesicle biogenesis. mBio 2012; 3:e00297–00211 [View Article] [PubMed]
    [Google Scholar]
  59. Kenny B, DeVinney R, Stein M, Reinscheid DJ, Frey EA et al. Enteropathogenic E. coli (EPEC) transfers its receptor for intimate adherence into mammalian cells. Cell 1997; 91:511–520 [View Article] [PubMed]
    [Google Scholar]
  60. Mao C, Gu J, Wang HG, Fang Y, Yang P et al. Translocation of enterohemorrhagic Escherichia coli effector Tir to the plasma membrane via host Golgi apparatus. Mol Med Rep 2017; 16:1544–1550 [View Article] [PubMed]
    [Google Scholar]
  61. Meuskens I, Saragliadis A, Leo JC, Linke D. Type V secretion systems: an overview of passenger domain functions. Front Microbiol 2019; 10:1163 [View Article] [PubMed]
    [Google Scholar]
  62. Mix A-K, Goob G, Sontowski E, Hauck CR. Microscale communication between bacterial pathogens and the host epithelium. Genes Immun 2021; 22:247–254 [View Article] [PubMed]
    [Google Scholar]
  63. Kotloff KL, Nataro JP, Blackwelder WC, Nasrin D, Farag TH et al. Burden and aetiology of diarrhoeal disease in infants and young children in developing countries (the Global Enteric Multicenter Study, GEMS): a prospective, case-control study. Lancet 2013; 382:209–222 [View Article] [PubMed]
    [Google Scholar]
  64. Keller B, Mühlenkamp M, Deuschle E, Siegfried A, Mössner S et al. Yersinia enterocolitica exploits different pathways to accomplish adhesion and toxin injection into host cells. Cell Microbiol 2015; 17:1179–1204 [View Article] [PubMed]
    [Google Scholar]
  65. Lu Y-Y, Franz B, Truttmann MC, Riess T, Gay-Fraret J et al. Bartonella henselae trimeric autotransporter adhesin BadA expression interferes with effector translocation by the VirB/D4 type IV secretion system. Cell Microbiol 2013; 15:759–778 [View Article] [PubMed]
    [Google Scholar]
  66. Redzej A, Ukleja M, Connery S, Trokter M, Felisberto-Rodrigues C et al. Structure of a VirD4 coupling protein bound to a VirB type IV secretion machinery. EMBO J 2017; 36:3080–3095 [View Article] [PubMed]
    [Google Scholar]
  67. Backert S, Selbach M. Role of type IV secretion in Helicobacter pylori pathogenesis. Cell Microbiol 2008; 10:1573–1581 [View Article] [PubMed]
    [Google Scholar]
  68. Backert S, Clyne M, Tegtmeyer N. Molecular mechanisms of gastric epithelial cell adhesion and injection of CagA by Helicobacter pylori. Cell Commun Signal 2011; 9:28 [View Article] [PubMed]
    [Google Scholar]
  69. Gerlach RG, Cláudio N, Rohde M, Jäckel D, Wagner C et al. Cooperation of Salmonella pathogenicity islands 1 and 4 is required to breach epithelial barriers. Cell Microbiol 2008; 10:2364–2376 [View Article] [PubMed]
    [Google Scholar]
  70. Ishijima N, Suzuki M, Ashida H, Ichikawa Y, Kanegae Y et al. BabA-mediated adherence is a potentiator of the Helicobacter pylori type IV secretion system activity. J Biol Chem 2011; 286:25256–25264 [View Article] [PubMed]
    [Google Scholar]
  71. Miyake M, Hanajima M, Matsuzawa T, Kobayashi C, Minami M et al. Binding of intimin with Tir on the bacterial surface is prerequisite for the barrier disruption induced by enteropathogenic Escherichia coli. Biochem Biophys Res Commun 2005; 337:922–927 [View Article] [PubMed]
    [Google Scholar]
  72. Sundin C, Wolfgang MC, Lory S, Forsberg A, Frithz-Lindsten E. Type IV pili are not specifically required for contact dependent translocation of exoenzymes by Pseudomonas aeruginosa. Microb Pathog 2002; 33:265–277 [View Article] [PubMed]
    [Google Scholar]
  73. Shevchik VE, Boccara M, Vedel R, Hugouvieux-Cotte-Pattat N. Processing of the pectate lyase PelI by extracellular proteases of Erwinia chrysanthemi 3937. Mol Microbiol 1998; 29:1459–1469 [View Article] [PubMed]
    [Google Scholar]
  74. Szczesny R, Jordan M, Schramm C, Schulz S, Cogez V et al. Functional characterization of the Xcs and Xps type II secretion systems from the plant pathogenic bacterium Xanthomonas campestris pv vesicatoria. New Phytol 2010; 187:983–1002 [View Article] [PubMed]
    [Google Scholar]
  75. Korotkov KV, Sandkvist M, Hol WGJ. The type II secretion system: biogenesis, molecular architecture and mechanism. Nat Rev Microbiol 2012; 10:336–351 [View Article] [PubMed]
    [Google Scholar]
  76. Hospenthal MK, Costa TRD, Waksman G. A comprehensive guide to pilus biogenesis in Gram-negative bacteria. Nat Rev Microbiol 2017; 15:365–379 [View Article] [PubMed]
    [Google Scholar]
  77. Alvarez-Martinez CE, Sgro GG, Araujo GG, Paiva MRN, Matsuyama BY et al. Secrete or perish: the role of secretion systems in Xanthomonas biology. Comput Struct Biotechnol J 2021; 19:279–302 [View Article] [PubMed]
    [Google Scholar]
  78. Guo Y, Figueiredo F, Jones J, Wang N. HrpG and HrpX play global roles in coordinating different virulence traits of Xanthomonas axonopodis pv. citri. Mol Plant Microbe Interact 2011; 24:649–661 [View Article] [PubMed]
    [Google Scholar]
  79. Jha G, Rajeshwari R, Sonti RV. Functional interplay between two Xanthomonas oryzae pv. oryzae secretion systems in modulating virulence on rice. MPMI 2007; 20:31–40 [View Article] [PubMed]
    [Google Scholar]
  80. Li C, Zhu L, Wang D, Wei Z, Hao X et al. T6SS secretes an LPS-binding effector to recruit OMVs for exploitative competition and horizontal gene transfer. ISME J 2021; 16:500–510 [View Article]
    [Google Scholar]
  81. Lin J, Zhang W, Cheng J, Yang X, Zhu K et al. A Pseudomonas T6SS effector recruits PQS-containing outer membrane vesicles for iron acquisition. Nat Commun 2017; 8:14888 [View Article] [PubMed]
    [Google Scholar]
  82. Mashburn-Warren L, Howe J, Garidel P, Richter W, Steiniger F et al. Interaction of quorum signals with outer membrane lipids: insights into prokaryotic membrane vesicle formation. Mol Microbiol 2008; 69:491–502 [View Article] [PubMed]
    [Google Scholar]
  83. Fulsundar S, Harms K, Flaten GE, Johnsen PJ, Chopade BA et al. Gene transfer potential of outer membrane vesicles of Acinetobacter baylyi and effects of stress on vesiculation. Appl Environ Microbiol 2014; 80:3469–3483 [View Article] [PubMed]
    [Google Scholar]
  84. Klieve AV, Yokoyama MT, Forster RJ, Ouwerkerk D, Bain PA et al. Naturally occurring DNA transfer system associated with membrane vesicles in cellulolytic Ruminococcus spp. of ruminal origin. Appl Environ Microbiol 2005; 71:4248–4253 [View Article] [PubMed]
    [Google Scholar]
  85. Mozaheb N, Mingeot-Leclercq M-P. Membrane vesicle production as a bacterial defense against stress. Front Microbiol 2020; 11:600221 [View Article] [PubMed]
    [Google Scholar]
  86. Ho BT, Basler M, Mekalanos JJ. Type 6 secretion system-mediated immunity to type 4 secretion system-mediated gene transfer. Science 2013; 342:250–253 [View Article] [PubMed]
    [Google Scholar]
  87. Custodio R, Ford RM, Ellison CJ, Liu G, Mickute G et al. Type VI secretion system killing by commensal Neisseria is influenced by expression of type four pili. Elife 2021; 10:e63755 [View Article] [PubMed]
    [Google Scholar]
  88. Craig L, Forest KT, Maier B. Type IV pili: dynamics, biophysics and functional consequences. Nat Rev Microbiol 2019; 17:429–440 [View Article] [PubMed]
    [Google Scholar]
  89. Gallegos-Monterrosa R, Coulthurst SJ. The ecological impact of a bacterial weapon: microbial interactions and the Type VI secretion system. FEMS Microbiol Rev 2021; 45:fuab033 [View Article] [PubMed]
    [Google Scholar]
  90. Sen-Kilic E, Huckaby AB, Damron FH, Barbier M. P. aeruginosa type III and type VI secretion systems modulate early response gene expression in type II pneumocytes in vitro. BMC Genomics 2022; 23:345 [View Article] [PubMed]
    [Google Scholar]
  91. An Y, Wang J, Li C, Revote J, Zhang Y et al. SecretEPDB: a comprehensive web-based resource for secreted effector proteins of the bacterial types III, IV and VI secretion systems. Sci Rep 2017; 7:1–10 [View Article]
    [Google Scholar]
  92. Janda M, Robatzek S. Extracellular vesicles from phytobacteria: properties, functions and uses. BiotechnolAdv 2022; 58:107934 [View Article] [PubMed]
    [Google Scholar]
  93. Solé M, Scheibner F, Hoffmeister A-K, Hartmann N, Hause G et al. Xanthomonas campestris pv. vesicatoria secretes proteases and xylanases via the Xps type II secretion system and outer membrane vesicles. J Bacteriol 2015; 197:2879–2893 [View Article] [PubMed]
    [Google Scholar]
  94. Chowdhury C, Jagannadham MV. Virulence factors are released in association with outer membrane vesicles of Pseudomonas syringae pv. tomato T1 during normal growth. Biochim Biophys Acta 2013; 1834:231–239 [View Article] [PubMed]
    [Google Scholar]
  95. Nascimento R, Gouran H, Chakraborty S, Gillespie HW, Almeida-Souza HO et al. The type II secreted lipase/esterase LesA is a key virulence factor required for Xylella fastidiosa pathogenesis in grapevines. Sci Rep 2016; 6:1–17 [View Article]
    [Google Scholar]
  96. Feitosa-Junior OR, Stefanello E, Zaini PA, Nascimento R, Pierry PM et al. Proteomic and metabolomic analyses of Xylella fastidiosa OMV-enriched fractions reveal association with virulence factors and signaling molecules of the DSF family. Phytopathology 2019; 109:1344–1353 [View Article] [PubMed]
    [Google Scholar]
  97. Jonca J, Waleron M, Czaplewska P, Bogucka A, Steć A et al. Membrane vesicles of Pectobacterium as an effective protein secretion system. Int J Mol Sci 2021; 22:12574 [View Article] [PubMed]
    [Google Scholar]
  98. Maphosa S, Moleleki LN. Isolation and characterization of outer membrane vesicles of Pectobacterium brasiliense 1692. Microorganisms 2021; 9:1918 [View Article]
    [Google Scholar]
  99. Prados-Rosales R, Weinrick BC, Piqué DG, Jacobs WR Jr, Casadevall A et al. Role for Mycobacterium tuberculosis membrane vesicles in iron acquisition. J Bacteriol 2014; 196:1250–1256 [View Article] [PubMed]
    [Google Scholar]
  100. West SA, Diggle SP, Buckling A, Gardner A, Griffin AS. The social lives of microbes. Annu Rev Ecol Evol Syst 2007; 38:53–77 [View Article]
    [Google Scholar]
  101. Glew MD, Gorasia DG, McMillan PJ, Butler CA, Veith PD et al. Complementation in trans of Porphyromonas gingivalis lipopolysaccharide biosynthetic mutants demonstrates lipopolysaccharide exchange. J Bacteriol 2021; 203:e00631–00620 [View Article] [PubMed]
    [Google Scholar]
  102. Vanaja SK, Russo AJ, Behl B, Banerjee I, Yankova M et al. Bacterial outer membrane vesicles mediate cytosolic localization of LPS and caspase-11 activation. Cell 2016; 165:1106–1119 [View Article] [PubMed]
    [Google Scholar]
  103. Vassallo C, Pathak DT, Cao P, Zuckerman DM, Hoiczyk E et al. Cell rejuvenation and social behaviors promoted by LPS exchange in myxobacteria. Proc Natl Acad Sci U S A 2015; 112:E2939–46 [View Article] [PubMed]
    [Google Scholar]
  104. Bingle LE, Bailey CM, Pallen MJ. Type VI secretion: a beginner’s guide. Curr Opin Microbiol 2008; 11:3–8 [View Article] [PubMed]
    [Google Scholar]
  105. Schwechheimer C, Kuehn MJ. Outer-membrane vesicles from Gram-negative bacteria: biogenesis and functions. Nat Rev Microbiol 2015; 13:605–619 [View Article] [PubMed]
    [Google Scholar]
  106. Glew MD, Veith PD, Peng B, Chen Y-Y, Gorasia DG et al. PG0026 is the C-terminal signal peptidase of a novel secretion system of Porphyromonas gingivalis. J Biol Chem 2012; 287:24605–24617 [View Article] [PubMed]
    [Google Scholar]
  107. Gorasia DG, Veith PD, Chen D, Seers CA, Mitchell HA et al. Porphyromonas gingivalis type IX secretion substrates are cleaved and modified by a sortase-like mechanism. PLoS Pathog 2015; 11:e1005152 [View Article] [PubMed]
    [Google Scholar]
  108. Veith PD, Shoji M, O’Hair RAJ, Leeming MG, Nie S et al. Type IX secretion system cargo proteins are glycosylated at the C terminus with a novel linking sugar of the Wbp/Vim pathway. mBio 2020; 11:e01497–01420 [View Article] [PubMed]
    [Google Scholar]
  109. Madej M, Nowakowska Z, Ksiazek M, Lasica AM, Mizgalska D et al. PorZ, an essential component of the type IX secretion system of Porphyromonas gingivalis, delivers anionic lipopolysaccharide to the PorU sortase for transpeptidase processing of T9SS cargo proteins. mBio 2021; 12:e02262–02220 [View Article] [PubMed]
    [Google Scholar]
  110. Bielska E, Sisquella MA, Aldeieg M, Birch C, O’Donoghue EJ et al. Pathogen-derived extracellular vesicles mediate virulence in the fatal human pathogen Cryptococcus gattii. Nat Commun 2018; 9:1556 [View Article] [PubMed]
    [Google Scholar]
  111. Virolle C, Goldlust K, Djermoun S, Bigot S, Lesterlin C. Plasmid transfer by conjugation in Gram-negative bacteria: from the cellular to the community level. Genes 2020; 11:1239 [View Article] [PubMed]
    [Google Scholar]
  112. Oyedemi BOM, Shinde V, Shinde K, Kakalou D, Stapleton PD et al. Novel R-plasmid conjugal transfer inhibitory and antibacterial activities of phenolic compounds from Mallotus philippensis (Lam.) Mull. Arg. J Glob Antimicrob Resist 2016; 5:15–21 [View Article] [PubMed]
    [Google Scholar]
  113. Chatterjee S, Mondal A, Mitra S, Basu S. Acinetobacter baumannii transfers the blaNDM-1 gene via outer membrane vesicles. J Antimicrob Chemother 2017; 72:2201–2207 [View Article] [PubMed]
    [Google Scholar]
  114. Kulkarni HM, Nagaraj R, Jagannadham MV. Protective role of E. coli outer membrane vesicles against antibiotics. Microbiol Res 2015; 181:1–7 [View Article] [PubMed]
    [Google Scholar]
  115. Manning AJ, Kuehn MJ. Contribution of bacterial outer membrane vesicles to innate bacterial defense. BMC Microbiol 2011; 11:1–15 [View Article] [PubMed]
    [Google Scholar]
  116. Rumbo C, Fernández-Moreira E, Merino M, Poza M, Mendez JA et al. Horizontal transfer of the OXA-24 carbapenemase gene via outer membrane vesicles: a new mechanism of dissemination of carbapenem resistance genes in Acinetobacter baumannii. Antimicrob Agents Chemother 2011; 55:3084–3090 [View Article] [PubMed]
    [Google Scholar]
  117. Rompikuntal PK, Vdovikova S, Duperthuy M, Johnson TL, Åhlund M et al. Outer membrane vesicle-mediated export of processed PrtV protease from Vibrio cholerae. PLoS One 2015; 10:e0134098 [View Article] [PubMed]
    [Google Scholar]
  118. Li J, Azam F, Zhang S. Outer membrane vesicles containing signalling molecules and active hydrolytic enzymes released by a coral pathogen Vibrio shilonii AK1. Environ Microbiol 2016; 18:3850–3866 [View Article] [PubMed]
    [Google Scholar]
  119. Toyofuku M, Morinaga K, Hashimoto Y, Uhl J, Shimamura H et al. Membrane vesicle-mediated bacterial communication. ISME J 2017; 11:1504–1509 [View Article] [PubMed]
    [Google Scholar]
  120. Leung KY, Siame BA, Snowball H, Mok Y-K. Type VI secretion regulation: crosstalk and intracellular communication. Curr Opin Microbiol 2011; 14:9–15 [View Article] [PubMed]
    [Google Scholar]
  121. Yeo CC, Espinosa M, Venkova T. Editorial: prokaryotic communications: from macromolecular interdomain to intercellular talks (recognition) and beyond. Front Mol Biosci 2021; 8:670572 [View Article] [PubMed]
    [Google Scholar]
  122. Condemine G, Le Derout B. Identification of new Dickeya dadantii virulence factors secreted by the type 2 secretion system. PLoS One 2022; 17:e0265075 [View Article] [PubMed]
    [Google Scholar]
  123. Ferreira RM, Moreira LM, Ferro JA, Soares MRR, Laia ML et al. Unravelling potential virulence factor candidates in Xanthomonas citri. subsp. citri by secretome analysis. PeerJ 2016; 4:e1734 [View Article] [PubMed]
    [Google Scholar]
  124. Zhang Y, Xian H, Jiang X, Yuan Y, Ji R et al. Identification of two Sel1-like proteins in SPI-19 of Salmonella enterica serovar Pullorum that can mediate bacterial infection through T3SS. Microbiol Res 2022; 262:127085 [View Article] [PubMed]
    [Google Scholar]
  125. Wang J, Li J, Hou Y, Dai W, Xie R et al. BastionHub: a universal platform for integrating and analyzing substrates secreted by Gram-negative bacteria. Nucleic Acids Res 2021; 49:D651–D659 [View Article] [PubMed]
    [Google Scholar]
  126. Hui X, Chen Z, Zhang J, Lu M, Cai X et al. Computational prediction of secreted proteins in gram-negative bacteria. CSBJ 2021; 19:1806–1828 [View Article] [PubMed]
    [Google Scholar]
  127. Ma B, Charkowski AO, Glasner JD, Perna NT. Identification of host-microbe interaction factors in the genomes of soft rot-associated pathogens Dickeya dadantii 3937 and Pectobacterium carotovorum WPP14 with supervised machine learning. BMC Genomics 2014; 15:508 [View Article] [PubMed]
    [Google Scholar]
  128. Dhroso A, Eidson S, Korkin D. Genome-wide prediction of bacterial effector candidates across six secretion system types using a feature-based statistical framework. Sci Rep 2018; 8:17209 [View Article] [PubMed]
    [Google Scholar]
  129. Mishra B, Kumar N, Mukhtar MS. Systems biology and machine learning in plant-pathogen interactions. Mol Plant Microbe Interact 2019; 32:45–55 [View Article] [PubMed]
    [Google Scholar]
  130. Gagic D, Ciric M, Wen WX, Ng F, Rakonjac J. Exploring the secretomes of microbes and microbial communities using filamentous phage display. Front Microbiol 2016; 7:429 [View Article] [PubMed]
    [Google Scholar]
  131. Maffei B, Francetic O, Subtil A. Tracking proteins secreted by bacteria: what’s in the toolbox?. Front Cell Infect Microbiol 2017; 7:221 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.001326
Loading
/content/journal/micro/10.1099/mic.0.001326
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error