1887

Abstract

In , quorum sensing (QS) depends on an interconnected regulatory hierarchy involving the Las, Rhl and Pq systems, which are collectively responsible for the co-ordinated synthesis of a diverse repertoire of -acylhomoserine lactones (AHLs) and 2-alkyl-4-quinolones (AQs). Apparent population density-dependent phenomena such as QS may, however, be due to growth rate and/or nutrient exhaustion in batch culture. Using continuous culture, we show that growth rate and population density independently modulate the accumulation of AHLs and AQs such that the highest concentrations are observed at a slow growth rate and high population density. Carbon source (notably succinate), nutrient limitation (C, N, Fe, Mg) or growth at 25 °C generally reduces AHL and AQ levels, except for P and S limitation, which result in substantially higher concentrations of AQs, particularly AQ -oxides, despite the lower population densities achieved. Principal component analysis indicates that ~26 % variation is due to nutrient limitation and a further 30 % is due to growth rate. The formation of -(3-oxododecanoyl)--homoserine lactone (3OC12-HSL) turnover products such as the ring opened form and tetramic acid varies with the limiting nutrient limitation and anaerobiosis. Differential ratios of -butanoyl-homoserine lactone (C4-HSL), 3OC12-HSL and the AQs as a function of growth environment are clearly apparent. Inactivation of QS by mutation of three key genes required for QS signal synthesis (, and ) substantially increases the concentrations of key substrates from the activated methyl cycle and aromatic amino acid biosynthesis, as well as ATP levels, highlighting the energetic drain that AHL and AQ synthesis and hence QS impose on .

Funding
This study was supported by the:
  • Biotechnology and Biological Sciences Research Council (Award BB/R012415/1)
    • Principle Award Recipient: MiguelCámara
  • Biotechnology and Biological Sciences Research Council (Award BB/D007 038/1)
    • Principle Award Recipient: PaulWilliams
  • H2020 Marie Skłodowska-Curie Actions (Award 41376)
    • Principle Award Recipient: Jean-FrédéricDubern
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.001316
2023-04-05
2024-05-04
Loading full text...

Full text loading...

/deliver/fulltext/micro/169/4/mic001316.html?itemId=/content/journal/micro/10.1099/mic.0.001316&mimeType=html&fmt=ahah

References

  1. Papenfort K, Bassler BL. Quorum sensing signal-response systems in Gram-negative bacteria. Nat Rev Microbiol 2016; 14:576–588 [View Article] [PubMed]
    [Google Scholar]
  2. Mukherjee S, Bassler BL. Bacterial quorum sensing in complex and dynamically changing environments. Nat Rev Microbiol 2019; 17:371–382 [View Article] [PubMed]
    [Google Scholar]
  3. Williams P, Winzer K, Chan WC, Cámara M. Look who’s talking: communication and quorum sensing in the bacterial world. Philos Trans R Soc Lond B Biol Sci 2007; 362:1119–1134 [View Article] [PubMed]
    [Google Scholar]
  4. Williams P, Cámara M. Quorum sensing and environmental adaptation in Pseudomonas aeruginosa: a tale of regulatory networks and multifunctional signal molecules. Curr Opin Microbiol 2009; 12:182–191 [View Article] [PubMed]
    [Google Scholar]
  5. Lee J, Zhang L. The hierarchy quorum sensing network in Pseudomonas aeruginosa. Protein Cell 2015; 6:26–41 [View Article] [PubMed]
    [Google Scholar]
  6. Rattray JB, Thomas SA, Wang Y, Molotkova E, Gurney J et al. Bacterial quorum sensing allows graded and bimodal cellular responses to variations in population density. mBio 2022; 13: [View Article] [PubMed]
    [Google Scholar]
  7. Diggle SP, Winzer K, Chhabra SR, Worrall KE, Cámara M et al. The Pseudomonas aeruginosa quinolone signal molecule overcomes the cell density-dependency of the quorum sensing hierarchy, regulates rhl-dependent genes at the onset of stationary phase and can be produced in the absence of LasR. Mol Microbiol 2003; 50:29–43 [View Article] [PubMed]
    [Google Scholar]
  8. Duan K, Surette MG. Environmental regulation of Pseudomonas aeruginosa PAO1 Las and Rhl quorum-sensing systems. J Bacteriol 2007; 189:4827–4836 [View Article] [PubMed]
    [Google Scholar]
  9. Soto-Aceves MP, Cocotl-Yañez M, Servín-González L, Soberón-Chávez G, O’Toole G. The Rhl quorum-sensing system is at the top of the regulatory hierarchy under phosphate-limiting conditions in Pseudomonas aeruginosa PAO1. J Bacteriol 2021; 203:e00475–20 [View Article] [PubMed]
    [Google Scholar]
  10. Ruparell A, Dubern JF, Ortori CA, Harrison F, Halliday NM et al. The fitness burden imposed by synthesising quorum sensing signals. Sci Rep 2016; 6:33101 [View Article] [PubMed]
    [Google Scholar]
  11. Pearson JP, Passador L, Iglewski BH, Greenberg EP. A second N-acylhomoserine lactone signal produced by Pseudomonas aeruginosa. Proc Natl Acad Sci 1995; 92:1490–1494 [View Article] [PubMed]
    [Google Scholar]
  12. Boursier ME, Moore JD, Heitman KM, Shepardson-Fungairino SP, Combs JB et al. Structure-function analyses of the N-butanoyl L-homoserine lactone quorum-sensing signal define features critical to activity in RhlR. ACS Chem Biol 2018; 13:2655–2662 [View Article] [PubMed]
    [Google Scholar]
  13. Manson DE, O’Reilly MC, Nyffeler KE, Blackwell HE. Design, synthesis, and biochemical characterization of non-native antagonists of the Pseudomonas aeruginosa quorum sensing receptor LasR with nanomolar IC50 values. ACS Infect Dis 2020; 6:649–661 [View Article] [PubMed]
    [Google Scholar]
  14. Ortori CA, Dubern J-F, Chhabra SR, Cámara M, Hardie K et al. Simultaneous quantitative profiling of N-acyl-L-homoserine lactone and 2-alkyl-4(1H)-quinolone families of quorum-sensing signaling molecules using LC-MS/MS. Anal Bioanal Chem 2011; 399:839–850 [View Article] [PubMed]
    [Google Scholar]
  15. Chugani S, Greenberg EP. An evolving perspective on the Pseudomonas aeruginosa orphan quorum sensing regulator QscR. Front Cell Infect Microbiol 2014; 4:152 [View Article] [PubMed]
    [Google Scholar]
  16. Chugani S, Greenberg EP. LuxR homolog-independent gene regulation by acyl-homoserine lactones in Pseudomonas aeruginosa. Proc Natl Acad Sci 2010; 107:10673–10678 [View Article] [PubMed]
    [Google Scholar]
  17. Lépine F, Milot S, Déziel E, He J, Rahme LG. Electrospray/mass spectrometric identification and analysis of 4-hydroxy-2-alkylquinolines (HAQs) produced by Pseudomonas aeruginosa. J Am Soc Mass Spectrom 2004; 15:862–869 [View Article] [PubMed]
    [Google Scholar]
  18. Lin J, Cheng J, Wang Y, Shen X. The Pseudomonas Quinolone Signal (PQS): not just for quorum sensing anymore. Front Cell Infect Microbiol 2018; 8:230 [View Article] [PubMed]
    [Google Scholar]
  19. Xiao G, Déziel E, He J, Lépine F, Lesic B et al. MvfR, a key Pseudomonas aeruginosa pathogenicity LTTR-class regulatory protein, has dual ligands. Mol Microbiol 2006; 62:1689–1699 [View Article] [PubMed]
    [Google Scholar]
  20. Ilangovan A, Fletcher M, Rampioni G, Pustelny C, Rumbaugh K et al. Structural basis for native agonist and synthetic inhibitor recognition by the Pseudomonas aeruginosa quorum sensing regulator PqsR (MvfR). PLoS Pathog 2013; 9:e1003508 [View Article] [PubMed]
    [Google Scholar]
  21. Schertzer JW, Brown SA, Whiteley M. Oxygen levels rapidly modulate Pseudomonas aeruginosa social behaviours via substrate limitation of PqsH. Mol Microbiol 2010; 77:1527–1538 [View Article] [PubMed]
    [Google Scholar]
  22. Drees SL, Ernst S, Belviso BD, Jagmann N, Hennecke U et al. PqsL uses reduced flavin to produce 2-hydroxylaminobenzoylacetate, a preferred PqsBC substrate in alkyl quinolone biosynthesis in Pseudomonas aeruginosa. J Biol Chem 2018; 293:9345–9357 [View Article] [PubMed]
    [Google Scholar]
  23. Hazan R, Que YA, Maura D, Strobel B, Majcherczyk PA et al. Auto poisoning of the respiratory chain by a quorum-sensing-regulated molecule favors biofilm formation and antibiotic tolerance. Curr Biol 2016; 26:195–206 [View Article] [PubMed]
    [Google Scholar]
  24. Davenport PW, Griffin JL, Welch M. Quorum sensing is accompanied by global metabolic changes in the opportunistic human pathogen Pseudomonas aeruginosa. J Bacteriol 2015; 197:2072–2082 [View Article] [PubMed]
    [Google Scholar]
  25. Moré MI, Finger LD, Stryker JL, Fuqua C, Eberhard A et al. Enzymatic synthesis of a quorum-sensing autoinducer through use of defined substrates. Science 1996; 272:1655–1658 [View Article] [PubMed]
    [Google Scholar]
  26. Palmer GC, Jorth PA, Whiteley M. The role of two Pseudomonas aeruginosa anthranilate synthases in tryptophan and quorum signal production. Microbiology 2013; 159:959–969 [View Article] [PubMed]
    [Google Scholar]
  27. Yates EA, Philipp B, Buckley C, Atkinson S, Chhabra SR et al. N-acylhomoserine lactones undergo lactonolysis in a pH-, temperature-, and acyl chain length-dependent manner during growth of Yersinia pseudotuberculosis and Pseudomonas aeruginosa. Infect Immun 2002; 70:5635–5646 [View Article] [PubMed]
    [Google Scholar]
  28. Sio CF, Otten LG, Cool RH, Diggle SP, Braun PG et al. Quorum quenching by an N-acyl-homoserine lactone acylase from Pseudomonas aeruginosa PAO1. Infect Immun 2006; 74:1673–1682 [View Article] [PubMed]
    [Google Scholar]
  29. Kaufmann GF, Sartorio R, Lee S-H, Rogers CJ, Meijler MM et al. Revisiting quorum sensing: discovery of additional chemical and biological functions for 3-oxo-N-acylhomoserine lactones. Proc Natl Acad Sci 2005; 102:309–314 [View Article] [PubMed]
    [Google Scholar]
  30. Murray EJ, Crowley RC, Truman A, Clarke SR, Cottam JA et al. Targeting Staphylococcus aureus quorum sensing with nonpeptidic small molecule inhibitors. J Med Chem 2014; 57:2813–2819 [View Article] [PubMed]
    [Google Scholar]
  31. Crone S, Vives-Flórez M, Kvich L, Saunders AM, Malone M et al. The environmental occurrence of Pseudomonas aeruginosa. APMIS 2020; 128:220–231 [View Article] [PubMed]
    [Google Scholar]
  32. Ombaka EA, Cozens RM, Brown MR. Influence of nutrient limitation of growth on stability and production of virulence factors of mucoid and nonmucoid strains of Pseudomonas aeruginosa. Rev Infect Dis 1983; 5 Suppl 5:S880–8 [View Article] [PubMed]
    [Google Scholar]
  33. Whooley MA, O’Callaghan JA, McLoughlin AJ. Effect of substrate on the regulation of exoprotease production by Pseudomonas aeruginosa ATCC 10145. J Gen Microbiol 1983; 129:981–988 [View Article] [PubMed]
    [Google Scholar]
  34. Guerra-Santos L, Käppeli O, Fiechter A. Pseudomonas aeruginosa biosurfactant production in continuous culture with glucose as carbon source. Appl Environ Microbiol 1984; 48:301–305 [View Article] [PubMed]
    [Google Scholar]
  35. Mellbye B, Schuster M. Physiological framework for the regulation of quorum sensing-dependent public goods in Pseudomonas aeruginosa. J Bacteriol 2014; 196:1155–1164 [View Article] [PubMed]
    [Google Scholar]
  36. Halliday NM, Hardie KR, Williams P, Winzer K, Barrett DA. Quantitative liquid chromatography-tandem mass spectrometry profiling of activated methyl cycle metabolites involved in LuxS-dependent quorum sensing in Escherichia coli. Anal Biochem 2010; 403:20–29 [View Article] [PubMed]
    [Google Scholar]
  37. Winzer K, Falconer C, Garber NC, Diggle SP, Camara M et al. The Pseudomonas aeruginosa lectins PA-IL and PA-IIL are controlled by quorum sensing and by RpoS. J Bacteriol 2000; 182:6401–6411 [View Article] [PubMed]
    [Google Scholar]
  38. Nikel PI, Kim J, de Lorenzo V. Metabolic and regulatory rearrangements underlying glycerol metabolism in Pseudomonas putida KT2440. Environ Microbiol 2014; 16:239–254 [View Article] [PubMed]
    [Google Scholar]
  39. Poblete-Castro I, Wittmann C, Nikel PI. Biochemistry, genetics and biotechnology of glycerol utilization in Pseudomonas species. Microb Biotechnol 2020; 13:32–53 [View Article] [PubMed]
    [Google Scholar]
  40. Patriquin GM, Banin E, Gilmour C, Tuchman R, Greenberg EP et al. Influence of quorum sensing and iron on twitching motility and biofilm formation in Pseudomonas aeruginosa. J Bacteriol 2008; 190:662–671 [View Article] [PubMed]
    [Google Scholar]
  41. Oglesby AG, Farrow JM, Lee J-H, Tomaras AP, Greenberg EP et al. The influence of iron on Pseudomonas aeruginosa physiology: a regulatory link between iron and quorum sensing. J Biol Chem 2008; 283:15558–15567 [View Article] [PubMed]
    [Google Scholar]
  42. Guina T, Purvine SO, Yi EC, Eng J, Goodlett DR et al. Quantitative proteomic analysis indicates increased synthesis of a quinolone by Pseudomonas aeruginosa isolates from cystic fibrosis airways. Proc Natl Acad Sci 2003; 100:2771–2776 [View Article] [PubMed]
    [Google Scholar]
  43. Tralau T, Vuilleumier S, Thibault C, Campbell BJ, Hart CA et al. Transcriptomic analysis of the sulfate starvation response of Pseudomonas aeruginosa. J Bacteriol 2007; 189:6743–6750 [View Article] [PubMed]
    [Google Scholar]
  44. Jensen V, Löns D, Zaoui C, Bredenbruch F, Meissner A et al. RhlR expression in Pseudomonas aeruginosa is modulated by the Pseudomonas quinolone signal via PhoB-dependent and -independent pathways. J Bacteriol 2006; 188:8601–8606 [View Article] [PubMed]
    [Google Scholar]
  45. Meng X, Ahator SD, Zhang L-H, Ellermeier CD. Molecular mechanisms of phosphate stress activation of Pseudomonas aeruginosa quorum sensing systems. mSphere 2020; 5:e00119–20 [View Article] [PubMed]
    [Google Scholar]
  46. Zaborin A, Romanowski K, Gerdes S, Holbrook C, Lepine F et al. Red death in Caenorhabditis elegans caused by Pseudomonas aeruginosa PAO1. Proc Natl Acad Sci U S A 2009; 106:6327–6332 [View Article] [PubMed]
    [Google Scholar]
  47. Grosso-Becerra MV, Croda-García G, Merino E, Servín-González L, Mojica-Espinosa R et al. Regulation of Pseudomonas aeruginosa virulence factors by two novel RNA thermometers. Proc Natl Acad Sci 2014; 111:15562–15567 [View Article] [PubMed]
    [Google Scholar]
  48. Parsons JF, Greenhagen BT, Shi K, Calabrese K, Robinson H et al. Structural and functional analysis of the pyocyanin biosynthetic protein PhzM from Pseudomonas aeruginosa. Biochemistry 2007; 46:1821–1828 [View Article] [PubMed]
    [Google Scholar]
  49. Hong Z, Bolard A, Giraud C, Prévost S, Genta-Jouve G et al. Azetidine-containing alkaloids produced by a quorum-sensing regulated nonribosomal peptide synthetase pathway in Pseudomonas aeruginosa. Angew Chem Int Ed Engl 2019; 58:3178–3182 [View Article] [PubMed]
    [Google Scholar]
  50. Barr HL, Halliday N, Cámara M, Barrett DA, Williams P et al. Pseudomonas aeruginosa quorum sensing molecules correlate with clinical status in cystic fibrosis. Eur Respir J 2015; 46:1046–1054 [View Article] [PubMed]
    [Google Scholar]
  51. Filkins LM, Graber JA, Olson DG, Dolben EL, Lynd LR et al. Coculture of Staphylococcus aureus with Pseudomonas aeruginosa drives S. aureus towards fermentative metabolism and reduced viability in a cystic fibrosis model. J Bacteriol 2015; 197:2252–2264 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.001316
Loading
/content/journal/micro/10.1099/mic.0.001316
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error