1887

Abstract

The production of specialized resting cells is a remarkable survival strategy developed by many organisms to withstand unfavourable environmental factors such as nutrient depletion or other changes in abiotic and/or biotic conditions. Five bacterial taxa are recognized to form specialized resting cells: Firmicutes, forming endospores Actinobacteria forming exospores Cyanobacteria forming akinetes; the δ-Proteobacterial order Myxococcales, forming myxospores; and Azotobacteraceae, forming cysts. All these specialized resting cells are characterized by low-to-absent metabolic activity and higher resistance to environmental stress (desiccation, heat, starvation, etc.) when compared to vegetative cells. Given their similarity in function, we tested the potential existence of a universal morpho-chemical marker for identifying these specialized resting cells. After the production of endospores, exospores, akinetes and cysts in model organisms, we performed the first cross-species morphological and chemical comparison of bacterial sporulation. Cryo-electron microscopy of vitreous sections (CEMOVIS) was used to describe near-native morphology of the resting cells in comparison to the morphology of their respective vegetative cells. Resting cells shared a thicker cell envelope as their only common morphological feature. The chemical composition of the different specialized resting cells at the single-cell level was investigated using confocal Raman microspectroscopy. Our results show that the different specialized cells do not share a common chemical signature, but rather each group has a unique signature with a variable conservation of the signature of the vegetative cells. Additionally, we present the validation of Raman signatures associated with calcium dipicolinic acid (CaDPA) and their variation across individual cells to develop specific sorting thresholds for the isolation of endospores. This provides a proof of concept of the feasibility of isolating bacterial spores using a Raman-activated cell-sorting platform. This cross-species comparison and the current knowledge of genetic pathways inducing the formation of the resting cells highlights the complexity of this convergent evolutionary strategy promoting bacterial survival.

Funding
This study was supported by the:
  • Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (Award 31003A_179297)
    • Principle Award Recipient: PilarJunier
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License.
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.001299
2023-02-20
2024-04-27
Loading full text...

Full text loading...

/deliver/fulltext/micro/169/2/mic001299.html?itemId=/content/journal/micro/10.1099/mic.0.001299&mimeType=html&fmt=ahah

References

  1. Gray DA, Dugar G, Gamba P, Strahl H, Jonker MJ et al. Extreme slow growth as alternative strategy to survive deep starvation in bacteria. Nat Commun 2019; 10:890 [View Article] [PubMed]
    [Google Scholar]
  2. Yang DC, Blair KM, Salama NR. Staying in Shape: the Impact of Cell Shape on Bacterial Survival in Diverse Environments. Microbiol Mol Biol Rev 2016; 80:187–203 [View Article] [PubMed]
    [Google Scholar]
  3. Rittershaus ESC, Baek S-H, Sassetti CM. The normalcy of dormancy: common themes in microbial quiescence. Cell Host Microbe 2013; 13:643–651 [View Article] [PubMed]
    [Google Scholar]
  4. Lennon JT, Jones SE. Microbial seed banks: the ecological and evolutionary implications of dormancy. Nat Rev Microbiol 2011; 9:119–130 [View Article] [PubMed]
    [Google Scholar]
  5. Lewis K. Persister cells. Annu Rev Microbiol 2010; 64:357–372 [View Article] [PubMed]
    [Google Scholar]
  6. Oren A et al. The order Halanaerobiales, and the families Halanaerobiaceae and Halobacteroidaceae. In Rosenberg E. eds The Prokaryotes: Firmicutes and Tenericutes Berlin Heidelberg: Springer Berlin Heidelberg; 2014 pp 153–177
    [Google Scholar]
  7. Campbell C, Adeolu M, Gupta RS. Genome-based taxonomic framework for the class Negativicutes: division of the class Negativicutes into the orders Selenomonadales emend., Acidaminococcales ord. nov. and Veillonellales ord. nov. Int J Syst Evol Microbiol 2015; 65:3203–3215 [View Article]
    [Google Scholar]
  8. Nicholson WL, Munakata N, Horneck G, Melosh HJ, Setlow P. Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments. Microbiol Mol Biol Rev 2000; 64:548–572 [View Article] [PubMed]
    [Google Scholar]
  9. Setlow P. Spore Resistance Properties. Microbiol Spectr 2014; 2: [View Article] [PubMed]
    [Google Scholar]
  10. Errington J. Regulation of endospore formation in Bacillus subtilis. Nat Rev Microbiol 2003; 1:117–126 [View Article] [PubMed]
    [Google Scholar]
  11. Setlow P. I will survive: DNA protection in bacterial spores. Trends Microbiol 2007; 15:172–180 [View Article] [PubMed]
    [Google Scholar]
  12. Scherr N, Nguyen L. Mycobacterium versus Streptomyces--we are different, we are the same. Curr Opin Microbiol 2009; 12:699–707 [View Article] [PubMed]
    [Google Scholar]
  13. McCormick JR, Flärdh K. Signals and regulators that govern Streptomyces development. FEMS Microbiol Rev 2012; 36:206–231 [View Article] [PubMed]
    [Google Scholar]
  14. Ensign JC. Formation, properties, and germination of actinomycete spores. Annu Rev Microbiol 1978; 32:185–219 [View Article] [PubMed]
    [Google Scholar]
  15. Beskrovnaya P, Sexton DL, Golmohammadzadeh M, Hashimi A, Tocheva EI. Structural, Metabolic and Evolutionary Comparison of Bacterial Endospore and Exospore Formation. Front Microbiol 2021; 12:630573 [View Article] [PubMed]
    [Google Scholar]
  16. Van Oosten MJ, Di Stasio E, Cirillo V, Silletti S, Ventorino V et al. Root inoculation with Azotobacter chroococcum 76A enhances tomato plants adaptation to salt stress under low N conditions. BMC Plant Biol 2018; 18:205 [View Article] [PubMed]
    [Google Scholar]
  17. Vela GR. Survival of Azotobacter in dry soil. Appl Microbiol 1974; 28:77–79 [View Article] [PubMed]
    [Google Scholar]
  18. Moreno J, Gonzalez-Lopez J, Vela GR. Survival of Azotobacter spp. in Dry Soils. Appl Environ Microbiol 1986; 51:123–125 [View Article] [PubMed]
    [Google Scholar]
  19. Wyss O, Neumnn MG, Socolofsky MD. Development and germination of the Azotobacter cyst. J Biophys Biochem Cytol 1961; 10:555–565 [View Article]
    [Google Scholar]
  20. Lin LP, Sadoff HL. Encystment and polymer production by Azotobacter vinelandii in the presence of beta-hydroxybutyrate. J Bacteriol 1968; 95:2336–2343 [View Article] [PubMed]
    [Google Scholar]
  21. Segura D, Núñez C, Espín G. Azotobacter cysts. In ELS 2020 pp 1–10
    [Google Scholar]
  22. Wireman J. Developmental induction of Myxococcus xanthus myxospores. J Bacteriol 1979; 140:147–153 [View Article] [PubMed]
    [Google Scholar]
  23. Kroos L. The Bacillus and Myxococcus developmental networks and their transcriptional regulators. Annu Rev Genet 2007; 41:13–39 [View Article] [PubMed]
    [Google Scholar]
  24. Sudo SZ, Dworkin M. Resistance of vegetative cells and microcysts of Myxococcus xanthus. J Bacteriol 1969; 98:883–887 [View Article] [PubMed]
    [Google Scholar]
  25. Muñoz-Dorado J, Moraleda-Muñoz A, Marcos-Torres FJ, Contreras-Moreno FJ, Martin-Cuadrado AB et al. Transcriptome dynamics of the Myxococcus xanthus multicellular developmental program. Elife 2019; 8:e50374 [View Article]
    [Google Scholar]
  26. Hoang Y, Franklin JL, Dufour YS, Kroos L. Cell density, alignment, and orientation correlate with C-signal-dependent gene expression during Myxococcus xanthus development. Proc Natl Acad Sci 2021; 118:45 [View Article]
    [Google Scholar]
  27. Thiery S, Kaimer C. The predation strategy of Myxococcus xanthus. Front Microbiol 2020; 11:2 [View Article]
    [Google Scholar]
  28. Kaplan-Levy RN et al. Akinetes: dormant cells of Cyanobacteria. In Lubzens E, Cerda J, Clark M. eds Dormancy and Resistance in Harsh Environments Berlin Heidelberg: Springer; 2010 pp 5–27
    [Google Scholar]
  29. Kumar K, Mella-Herrera RA, Golden JW. Cyanobacterial heterocysts. Cold Spring Harb Perspect Biol 2010; 2:a000315 [View Article]
    [Google Scholar]
  30. Perez R, Forchhammer K, Salerno G, Maldener I. Clear differences in metabolic and morphological adaptations of akinetes of two Nostocales living in different habitats. Microbiology 2016; 162:214–223 [View Article]
    [Google Scholar]
  31. Al-Hinai MA, Jones SW, Papoutsakis ET. The Clostridium sporulation programs: diversity and preservation of endospore differentiation. Microbiol Mol Biol Rev 2015; 79:19–37 [View Article] [PubMed]
    [Google Scholar]
  32. Hense I, Beckmann A. Towards a model of cyanobacteria life cycle—effects of growing and resting stages on bloom formation of N2-fixing species. Ecological Modelling 2006; 195:205–218 [View Article]
    [Google Scholar]
  33. Tocheva EI, Ortega DR, Jensen GJ. Sporulation, bacterial cell envelopes and the origin of life. Nat Rev Microbiol 2016; 14:535–542 [View Article] [PubMed]
    [Google Scholar]
  34. Errington J. L-form bacteria, cell walls and the origins of life. Open Biol 2013; 3:120143 [View Article] [PubMed]
    [Google Scholar]
  35. Vollmer W. Bacterial outer membrane evolution via sporulation?. Nat Chem Biol 2011; 8:14–18 [View Article] [PubMed]
    [Google Scholar]
  36. Xavier JC, Gerhards RE, Wimmer JLE, Brueckner J, Tria FDK et al. The metabolic network of the last bacterial common ancestor. Commun Biol 2021; 4:413 [View Article]
    [Google Scholar]
  37. Jones SE, Lennon JT. Dormancy contributes to the maintenance of microbial diversity. Proc Natl Acad Sci 2010; 107:5881–5886 [View Article]
    [Google Scholar]
  38. Al-Amoudi A, Chang J-J, Leforestier A, McDowall A, Salamin LM et al. Cryo-electron microscopy of vitreous sections. EMBO J 2004; 23:3583–3588 [View Article] [PubMed]
    [Google Scholar]
  39. Han HM, Zuber B, Dubochet J. Compression and crevasses in vitreous sections under different cutting conditions. J Microsc 2008; 230:167–171 [View Article] [PubMed]
    [Google Scholar]
  40. Liedtke J, Depelteau JS, Briegel A. How advances in cryo-electron tomography have contributed to our current view of bacterial cell biology. J Struct Biol X 2022; 6:100065 [View Article]
    [Google Scholar]
  41. Zuber B, Chami M, Houssin C, Dubochet J, Griffiths G et al. Direct visualization of the outer membrane of mycobacteria and corynebacteria in their native state. J Bacteriol 2008; 190:5672–5680 [View Article]
    [Google Scholar]
  42. Hoffmann C, Leis A, Niederweis M, Plitzko JM, Engelhardt H. Disclosure of the mycobacterial outer membrane: cryo-electron tomography and vitreous sections reveal the lipid bilayer structure. Proc Natl Acad Sci 2008; 105:3963–3967 [View Article]
    [Google Scholar]
  43. Couture-Tosi E, Ranck J-L, Haustant G, Pehau-Arnaudet G, Sachse M. CEMOVIS on a pathogen: analysis of Bacillus anthracis spores. Biol Cell 2010; 102:609–619 [View Article]
    [Google Scholar]
  44. Dittmann C, Han H-M, Grabenbauer M, Laue M. Dormant Bacillus spores protect their DNA in crystalline nucleoids against environmental stress. J Struct Biol 2015; 191:156–164 [View Article]
    [Google Scholar]
  45. Yan S, Qiu J, Guo L, Li D, Xu D et al. Development overview of Raman-activated cell sorting devoted to bacterial detection at single-cell level. Appl Microbiol Biotechnol 2021; 105:1315–1331 [View Article] [PubMed]
    [Google Scholar]
  46. Socolofsky MD, Wyss O. Cysts of Azotobacter. J Bacteriol 1961; 81:946–954 [View Article]
    [Google Scholar]
  47. Hodgkin J, Kaiser D. Cell-to-cell stimulation of movement in nonmotile mutants of Myxococcus. Proc Natl Acad Sci 1977; 74:2938–2942 [View Article]
    [Google Scholar]
  48. Waterbury JB, Stanier RY et al. Stanier, isolation and growth of cyanobacteria from marine and hypersaline environments. In Starr MP. eds The Prokaryotes: A Handbook on Habitats, Isolation, and Identification of Bacteria Berlin Heidelberg: Springer; 1981 pp 221–223
    [Google Scholar]
  49. Vela GR, Wyss O. Improved stain for visualization of Azotobacter encystment. J Bacteriol 1964; 87:476–477 [View Article]
    [Google Scholar]
  50. Studer D, Graber W, Al-Amoudi A, Eggli P. A new approach for cryofixation by high-pressure freezing. J Microsc 2001; 203:285–294 [View Article] [PubMed]
    [Google Scholar]
  51. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M et al. Fiji: an open-source platform for biological-image analysis. Nat Methods 2012; 9:676–682 [View Article] [PubMed]
    [Google Scholar]
  52. Lee KS, Landry Z, Pereira FC, Wagner M, Berry D et al. Raman microspectroscopy for microbiology. Nat Rev Methods Primers 2021; 1:80 [View Article]
    [Google Scholar]
  53. Matias VRF, Beveridge TJ. Cryo-electron microscopy reveals native polymeric cell wall structure in Bacillus subtilis 168 and the existence of a periplasmic space. Mol Microbiol 2005; 56:240–251 [View Article] [PubMed]
    [Google Scholar]
  54. Zuber B, Haenni M, Ribeiro T, Minnig K, Lopes F et al. Granular layer in the periplasmic space of gram-positive bacteria and fine structures of Enterococcus gallinarum and Streptococcus gordonii septa revealed by cryo-electron microscopy of vitreous sections. J Bacteriol 2006; 188:6652–6660 [View Article] [PubMed]
    [Google Scholar]
  55. Shimkets LJ. Social and developmental biology of the myxobacteria. Microbiol Rev 1990; 54:473–501 [View Article] [PubMed]
    [Google Scholar]
  56. Huang S, Chen D, Pelczar PL, Vepachedu VR, Setlow P et al. Levels of Ca2+-dipicolinic acid in individual bacillus spores determined using microfluidic Raman tweezers. J Bacteriol 2007; 189:4681–4687 [View Article] [PubMed]
    [Google Scholar]
  57. Magge A, Granger AC, Wahome PG, Setlow B, Vepachedu VR et al. Role of dipicolinic acid in the germination, stability, and viability of spores of Bacillus subtilis. J Bacteriol 2008; 190:4798–4807 [View Article] [PubMed]
    [Google Scholar]
  58. Setlow P. Spores of Bacillus subtilis: their resistance to and killing by radiation, heat and chemicals. J Appl Microbiol 2006; 101:514–525 [View Article] [PubMed]
    [Google Scholar]
  59. Huang M, Hull CM. Sporulation: how to survive on planet Earth (and beyond). Curr Genet 2017; 63:831–838 [View Article] [PubMed]
    [Google Scholar]
  60. Singh P, Khan A, Srivastava A et al. Chapter 16 - Heterocyst and akinete differentiation in cyanobacteria: a view toward cyanobacterial symbiosis. In Singh PK. eds Advances in Cyanobacterial Biology Academic Press; 2020 pp 235–248
    [Google Scholar]
  61. De Gelder J, De Gussem K, Vandenabeele P, Moens L. Reference database of Raman spectra of biological molecules. J Raman Spectrosc 2007; 38:1133–1147 [View Article]
    [Google Scholar]
  62. Verrier S, Notingher I, Polak JM, Hench LL. In situ monitoring of cell death using Raman microspectroscopy. Biopolymers 2004; 74:157–162 [View Article] [PubMed]
    [Google Scholar]
  63. McBride MJ, Ensign JC. Metabolism of endogenous trehalose by Streptomyces griseus spores and by spores or cells of other actinomycetes. J Bacteriol 1987; 169:5002–5007 [View Article] [PubMed]
    [Google Scholar]
  64. Rueda B, Miguélez EM, Hardisson C, Manzanal MB. Changes in glycogen and trehalose content of Streptomyces brasiliensis hyphae during growth in liquid cultures under sporulating and non-sporulating conditions. FEMS Microbiol Lett 2001; 194:181–185 [View Article] [PubMed]
    [Google Scholar]
  65. Guo N, Puhlev I, Brown DR, Mansbridge J, Levine F. Trehalose expression confers desiccation tolerance on human cells. Nat Biotechnol 2000; 18:168–171 [View Article] [PubMed]
    [Google Scholar]
  66. Tapia H, Koshland DE. Trehalose is a versatile and long-lived chaperone for desiccation tolerance. Curr Biol 2014; 24:2758–2766 [View Article] [PubMed]
    [Google Scholar]
  67. McBride MJ, Zusman DR. Trehalose accumulation in vegetative cells and spores of Myxococcus xanthus. J Bacteriol 1989; 171:6383–6386 [View Article] [PubMed]
    [Google Scholar]
  68. Kimura Y, Kawasaki S, Tuchimoto R, Tanaka N. Trehalose biosynthesis in Myxococcus xanthus under osmotic stress and during spore formation. J Biochem 2014; 155:17–24 [View Article] [PubMed]
    [Google Scholar]
  69. Chowdhury-Paul S, Pando-Robles V, Jiménez-Jacinto V, Segura D, Espín G et al. Proteomic analysis revealed proteins induced upon Azotobacter vinelandii encystment. J Proteomics 2018; 181:47–59 [View Article] [PubMed]
    [Google Scholar]
  70. Pendukar SH, Kulkarni PR. Chemical composition of bacillus spores. Nahrung 1988; 32:1003–1004 [View Article] [PubMed]
    [Google Scholar]
  71. Zhang P, Thomas S, Li Y, Setlow P. Effects of cortex peptidoglycan structure and cortex hydrolysis on the kinetics of Ca(2+)-dipicolinic acid release during Bacillus subtilis spore germination. J Bacteriol 2012; 194:646–652 [View Article] [PubMed]
    [Google Scholar]
  72. Stöckel S, Meisel S, Elschner M, Rösch P, Popp J. Raman spectroscopic detection of anthrax endospores in powder samples. Angew Chem Int Ed Engl 2012; 51:5339–5342 [View Article] [PubMed]
    [Google Scholar]
  73. Ikeno S, Maekawa T, Hara N. Multi-functional silver nanoparticles for high-throughput endospore sensing. Biosensors 2022; 12:68 [View Article]
    [Google Scholar]
  74. Wörmer L, Hoshino T, Bowles MW, Viehweger B, Adhikari RR et al. Microbial dormancy in the marine subsurface: global endospore abundance and response to burial. Sci Adv 2019; 5:eaav1024 [View Article]
    [Google Scholar]
  75. Rattray JE, Chakraborty A, Li C, Elizondo G, John N et al. Sensitive quantification of dipicolinic acid from bacterial endospores in soils and sediments. Environ Microbiol 2021; 23:1397–1406 [View Article] [PubMed]
    [Google Scholar]
  76. Pellegrino PM, Fell NF, Gillespie JB. Enhanced spore detection using dipicolinate extraction techniques. Analytica Chimica Acta 2002; 455:167–177 [View Article]
    [Google Scholar]
  77. Fichtel J, Köster J, Rullkötter J, Sass H. Spore dipicolinic acid contents used for estimating the number of endospores in sediments. FEMS Microbiol Ecol 2007; 61:522–532 [View Article]
    [Google Scholar]
  78. Bueche M, Wunderlin T, Roussel-Delif L, Junier T, Sauvain L et al. Quantification of endospore-forming firmicutes by quantitative PCR with the functional gene spo0A. Appl Environ Microbiol 2013; 79:5302–5312 [View Article]
    [Google Scholar]
  79. Avershina E, Larsen MG, Aspholm M, Lindback T, Storrø O et al. Culture dependent and independent analyses suggest a low level of sharing of endospore-forming species between mothers and their children. Sci Rep 2020; 10:1832 [View Article] [PubMed]
    [Google Scholar]
  80. Knüpfer M, Braun P, Baumann K, Rehn A, Antwerpen M et al. Evaluation of a highly efficient DNA extraction method for Bacillus anthracis endospores. Microorganisms 2020; 8:763 [View Article]
    [Google Scholar]
  81. Wunderlin T, Junier T, Paul C, Jeanneret N, Junier P. Physical isolation of endospores from environmental samples by targeted lysis of vegetative cells. J Vis Exp 2016; 2016:e53411 [View Article]
    [Google Scholar]
  82. Lee KS, Palatinszky M, Pereira FC, Nguyen J, Fernandez VI et al. An automated Raman-based platform for the sorting of live cells by functional properties. Nat Microbiol 2019; 4:1035–1048 [View Article] [PubMed]
    [Google Scholar]
  83. Li M, Xu J, Romero-Gonzalez M, Banwart SA, Huang WE. Single cell Raman spectroscopy for cell sorting and imaging. Curr Opin Biotechnol 2012; 23:56–63 [View Article] [PubMed]
    [Google Scholar]
  84. Egan M, Dempsey E, Ryan CA, Ross RP, Stanton C. The sporobiota of the human gut. Gut Microbes 2021; 13:1–17 [View Article]
    [Google Scholar]
  85. Tetz G, Tetz V. Introducing the sporobiota and sporobiome. Gut Pathog 2017; 9:38 [View Article] [PubMed]
    [Google Scholar]
  86. López-Moreno A, Ruiz-Moreno Á, Pardo-Cacho J, Cerk K, Torres-Sánchez A et al. Culturing and molecular approaches for identifying microbiota taxa impacting children’s obesogenic phenotypes related to xenobiotic dietary exposure. Nutrients 2022; 14:241 [View Article]
    [Google Scholar]
  87. Lomstein BA, Langerhuus AT, D’Hondt S, Jørgensen BB, Spivack AJ. Endospore abundance, microbial growth and necromass turnover in deep sub-seafloor sediment. Nature 2012; 484:101–104 [View Article] [PubMed]
    [Google Scholar]
  88. Chakraborty A, Ellefson E, Li C, Gittins D, Brooks JM et al. Thermophilic endospores associated with migrated thermogenic hydrocarbons in deep Gulf of Mexico marine sediments. ISME J 2018; 12:1895–1906 [View Article] [PubMed]
    [Google Scholar]
  89. Madueño L, Paul C, Junier T, Bayrychenko Z, Filippidou S et al. A historical legacy of antibiotic utilization on bacterial seed banks in sediments. PeerJ 2018; 6:e4197 [View Article]
    [Google Scholar]
  90. Paul C, Bayrychenko Z, Junier T, Filippidou S, Beck K et al. Dissemination of antibiotic resistance genes associated with the sporobiota in sediments impacted by wastewater. PeerJ 2018; 6:e4989 [View Article]
    [Google Scholar]
  91. Ramos-Silva P, Serrano M, Henriques AO. From root to tips: sporulation evolution and specialization in Bacillus subtilis and the intestinal pathogen Clostridioides difficile. Mol Biol Evol 2019; 36:2714–2736 [View Article]
    [Google Scholar]
  92. Molle V, Fujita M, Jensen ST, Eichenberger P, González-Pastor JE et al. The Spo0A regulon of Bacillus subtilis. Mol Microbiol 2003; 50:1683–1701 [View Article] [PubMed]
    [Google Scholar]
  93. Goldman B, Bhat S, Shimkets LJ. Genome evolution and the emergence of fruiting body development in Myxococcus xanthus. PLoS One 2007; 2:e1329 [View Article]
    [Google Scholar]
  94. Huntley S, Hamann N, Wegener-Feldbrügge S, Treuner-Lange A, Kube M et al. Comparative genomic analysis of fruiting body formation in Myxococcales. Mol Biol Evol 2011; 28:1083–1097 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.001299
Loading
/content/journal/micro/10.1099/mic.0.001299
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error