1887

Abstract

In the present study we evaluated the fitness, antimicrobial susceptibility, metabolic activity, gene expression, production of virulence factors and virulence of experimentally evolved PAO1. These strains were previously evolved in the presence of tobramycin and the quorum sensing inhibitor furanone C-30 (C-30) and carried mutations in and . Compared to the wild-type (WT), the evolved strains show a different growth rate and different metabolic activity, suggesting they have an altered fitness. mutants were less susceptible to C-30 than WT strains; they also show reduced susceptibility to chloramphenicol and ciprofloxacin, two substrates of the MexEF-OprN efflux pump. mutants had a decreased susceptibility to aminoglycoside antibiotics, and an increased susceptibility to chloramphenicol. The decreased antimicrobial susceptibility and decreased susceptibility to C-30 was accompanied by a changed metabolic activity profile during treatment. The expression of was significantly increased in mutants and induced by C-30, suggesting that MexEF-OprN exports C-30 out of the bacterial cell. The production of virulence factors as well as virulence in two models of the strains evolved in the presence of C-30 was unchanged compared to the virulence of the WT. Finally, the evolved strains were less susceptible towards tobramycin (alone and combined with C-30) in an mouse model. In conclusion, this study shows that mutations acquired during experimental evolution of biofilms in the presence of tobramycin and C-30, are accompanied by an altered fitness, metabolism, expression and and antimicrobial susceptibility.

Funding
This study was supported by the:
  • Lundbeckfonden (Award R364-2021-1474)
    • Principle Award Recipient: ThomasBjarnsholt
  • FWO-Vlaanderen (Award V401322N)
    • Principle Award Recipient: TomCoenye
  • Bijzonder Onderzoeksfonds UGent (Award BOF.DOC.2018.0023.01)
    • Principle Award Recipient: MonaBové
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License.
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.001278
2023-01-18
2024-05-05
Loading full text...

Full text loading...

/deliver/fulltext/micro/169/1/mic001278.html?itemId=/content/journal/micro/10.1099/mic.0.001278&mimeType=html&fmt=ahah

References

  1. Ciofu O, Tolker-Nielsen T. Tolerance and resistance of Pseudomonas aeruginosa biofilms to antimicrobial agents-How P. aeruginosa can escape antibiotics. Front Microbiol 2019; 10:913 [View Article]
    [Google Scholar]
  2. Pang Z, Raudonis R, Glick BR, Lin TJ, Cheng Z. Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies. Biotechnol Adv 2019; 37:177–192 [View Article] [PubMed]
    [Google Scholar]
  3. Fernando DM, Kumar A. Resistance-nodulation-division multidrug efflux pumps in Gram-negative bacteria: role in virulence. Antibiotics 2013; 2:163–181 [View Article]
    [Google Scholar]
  4. Juarez P, Broutin I, Bordi C, Plésiat P, Llanes C. Constitutive activation of mexT by amino acid substitutions results in MexEF-OprN overproduction in clinical isolates of Pseudomonas aeruginosa. Antimicrob Agents Chemother 2018; 62:e02445-17 [View Article]
    [Google Scholar]
  5. Organ G, Main JH. Utilization of an oral pathology diagnostic service by dentists. Dent J 1976; 42:555–558
    [Google Scholar]
  6. Llanes C, Köhler T, Patry I, Dehecq B, van Delden C et al. Role of the MexEF-OprN efflux system in low-level resistance of Pseudomonas aeruginosa to ciprofloxacin. Antimicrob Agents Chemother 2011; 55:5676–5684 [View Article] [PubMed]
    [Google Scholar]
  7. Fukuda H, Hosaka M, Hirai K, Iyobe S. New norfloxacin resistance gene in Pseudomonas aeruginosa PAO. Antimicrob Agents Chemother 1990; 34:1757–1761 [View Article] [PubMed]
    [Google Scholar]
  8. Uwate M, Ichise Y, Shirai A, Omasa T, Nakae T et al. Two routes of MexS-MexT-mediated regulation of MexEF-OprN and MexAB-OprM efflux pump expression in Pseudomonas aeruginosa. Microbiol Immunol 2013; 57:263–272 [View Article] [PubMed]
    [Google Scholar]
  9. Kim S, Kim SH, Ahn J, Jo I, Lee Z-W et al. Crystal structure of the regulatory domain of MexT, a transcriptional activator of the MexEFOprN efflux pump in Pseudomonas aeruginosa. Mol Cells 2019; 42:850–857 [View Article]
    [Google Scholar]
  10. Fetar H, Gilmour C, Klinoski R, Daigle DM, Dean CR et al. mexEF-oprN multidrug efflux operon of Pseudomonas aeruginosa: regulation by the MexT activator in response to nitrosative stress and chloramphenicol. Antimicrob Agents Chemother 2011; 55:508–514 [View Article] [PubMed]
    [Google Scholar]
  11. Jin Y, Yang H, Qiao M, Jin S. MexT regulates the type III secretion system through MexS and PtrC in Pseudomonas aeruginosa. J Bacteriol 2011; 193:399–410 [View Article] [PubMed]
    [Google Scholar]
  12. Sobel ML, Neshat S, Poole K. Mutations in PA2491 (mexS) promote MexT-dependent mexEF-oprN expression and multidrug resistance in a clinical strain of Pseudomonas aeruginosa. J Bacteriol 2005; 187:1246–1253 [View Article] [PubMed]
    [Google Scholar]
  13. González-Vázquez MC, Rocha-Gracia RDC, Carabarín-Lima A, Bello-López E, Huerta-Romano F et al. Location of OprD porin in Pseudomonas aeruginosa clinical isolates. APMIS 2021; 129:213–224 [View Article]
    [Google Scholar]
  14. Brackman G, Coenye T. Quorum sensing inhibitors as anti-biofilm agents. Curr Pharm Des 2015; 21:5–11 [View Article] [PubMed]
    [Google Scholar]
  15. Brackman G, Cos P, Maes L, Nelis HJ, Coenye T. Quorum sensing inhibitors increase the susceptibility of bacterial biofilms to antibiotics in vitro and in vivo. Antimicrob Agents Chemother 2011; 55:2655–2661 [View Article] [PubMed]
    [Google Scholar]
  16. Brackman G, Defoirdt T, Miyamoto C, Bossier P, Van Calenbergh S et al. Cinnamaldehyde and cinnamaldehyde derivatives reduce virulence in Vibrio spp. by decreasing the DNA-binding activity of the quorum sensing response regulator LuxR. BMC Microbiol 2008; 8:149 [View Article] [PubMed]
    [Google Scholar]
  17. Christensen LD, van Gennip M, Jakobsen TH, Alhede M, Hougen HP et al. Synergistic antibacterial efficacy of early combination treatment with tobramycin and quorum-sensing inhibitors against Pseudomonas aeruginosa in an intraperitoneal foreign-body infection mouse model. J Antimicrob Chemother 2012; 67:1198–1206 [View Article] [PubMed]
    [Google Scholar]
  18. Scoffone VC, Trespidi G, Chiarelli LR, Barbieri G, Buroni S. Quorum sensing as antivirulence target in cystic fibrosis pathogens. Int J Mol Sci 2019; 20:1838 [View Article]
    [Google Scholar]
  19. Ellermann M, Sperandio V. Bacterial signaling as an antimicrobial target. Curr Opin Microbiol 2020; 57:78–86 [View Article] [PubMed]
    [Google Scholar]
  20. Defoirdt T. Quorum-sensing systems as targets for antivirulence therapy. Trends Microbiol 2018; 26:313–328 [View Article]
    [Google Scholar]
  21. Hentzer M, Wu H, Andersen JB, Riedel K, Rasmussen TB et al. Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors. EMBO J 2003; 22:3803–3815 [View Article] [PubMed]
    [Google Scholar]
  22. Defoirdt T, Brackman G, Coenye T. Quorum sensing inhibitors: how strong is the evidence?. Trends Microbiol 2013; 21:619–624 [View Article] [PubMed]
    [Google Scholar]
  23. Liu Y, Qin Q, Defoirdt T. Does quorum sensing interference affect the fitness of bacterial pathogens in the real world?. Environ Microbiol 2018; 20:3918–3926 [View Article] [PubMed]
    [Google Scholar]
  24. Manefield M, de Nys R, Naresh K, Roger R, Givskov M et al. Evidence that halogenated furanones from Delisea pulchra inhibit acylated homoserine lactone (AHL)-mediated gene expression by displacing the AHL signal from its receptor protein. Microbiology 1999; 145 (Pt 2):283–291 [View Article]
    [Google Scholar]
  25. Hentzer M, Riedel K, Rasmussen TB, Heydorn A, Andersen JB et al. Inhibition of quorum sensing in Pseudomonas aeruginosa biofilm bacteria by a halogenated furanone compound. Microbiology 2002; 148:87–102 [View Article]
    [Google Scholar]
  26. Wu H, Song Z, Hentzer M, Andersen JB, Molin S et al. Synthetic furanones inhibit quorum-sensing and enhance bacterial clearance in Pseudomonas aeruginosa lung infection in mice. J Antimicrob Chemother 2004; 53:1054–1061 [View Article] [PubMed]
    [Google Scholar]
  27. García-Contreras R, Martínez-Vázquez M, Velázquez Guadarrama N, Villegas Pañeda AG, Hashimoto T et al. Resistance to the quorum-quenching compounds brominated furanone C-30 and 5-fluorouracil in Pseudomonas aeruginosa clinical isolates. Pathog Dis 2013; 68:8–11 [View Article] [PubMed]
    [Google Scholar]
  28. García-Contreras R, Peréz-Eretza B, Jasso-Chávez R, Lira-Silva E, Roldán-Sánchez JA et al. High variability in quorum quenching and growth inhibition by furanone C-30 in Pseudomonas aeruginosa clinical isolates from cystic fibrosis patients. Pathog Dis 2015; 73:ftv040 [View Article]
    [Google Scholar]
  29. Maeda T, García-Contreras R, Pu M, Sheng L, Garcia LR et al. Quorum quenching quandary: resistance to antivirulence compounds. ISME J 2012; 6:493–501 [View Article] [PubMed]
    [Google Scholar]
  30. Bové M, Bao X, Sass A, Crabbé A, Coenye T. The quorum-sensing inhibitor furanone C-30 rapidly loses its tobramycin-potentiating activity against Pseudomonas aeruginosa biofilms during experimental evolution. Antimicrob Agents Chemother 2021; 65:e0041321 [View Article]
    [Google Scholar]
  31. LoVullo ED, Schweizer HP. Pseudomonas aeruginosa mexT is an indicator of PAO1 strain integrity. J Med Microbiol 2020; 69:139–145 [View Article] [PubMed]
    [Google Scholar]
  32. Maunders EA, Triniman RC, Western J, Rahman T, Welch M. Global reprogramming of virulence and antibiotic resistance in Pseudomonas aeruginosa by a single nucleotide polymorphism in elongation factor, fusA1. J Biol Chem 2020; 295:16411–16426 [View Article] [PubMed]
    [Google Scholar]
  33. Bolard A, Plésiat P, Jeannot K. Mutations in gene fusA1 as a novel mechanism of aminoglycoside resistance in clinical strains of Pseudomonas aeruginosa. Antimicrob Agents Chemother 2018; 62:e01835-17 [View Article]
    [Google Scholar]
  34. Rezzoagli C, Archetti M, Mignot I, Baumgartner M, Kümmerli R. Combining antibiotics with antivirulence compounds can have synergistic effects and reverse selection for antibiotic resistance in Pseudomonas aeruginosa. PLoS Biol 2020; 18:e3000805 [View Article]
    [Google Scholar]
  35. Baquero F, Martínez JL, F Lanza V, Rodríguez-Beltrán J, Galán JC et al. Evolutionary pathways and trajectories in antibiotic resistance. Clin Microbiol Rev 2021; 34:e0005019 [View Article]
    [Google Scholar]
  36. Basra P, Alsaadi A, Bernal-Astrain G, O’Sullivan ML, Hazlett B et al. Fitness tradeoffs of antibiotic resistance in extraintestinal pathogenic Escherichia coli. Genome Biol Evol 2018; 10:667–679 [View Article]
    [Google Scholar]
  37. EUCAST Reading guide for broth microdilution version 3; 2021
  38. Lichtenberg M, Kragh KN, Fritz B, Kirkegaard JB, Tolker-Nielsen T et al. Cyclic-di-GMP signaling controls metabolic activity in Pseudomonas aeruginosa. Cell Rep 2022; 41:111515 [View Article]
    [Google Scholar]
  39. Metsalu T, Vilo J. ClustVis: a web tool for visualizing clustering of multivariate data using principal component analysis and heatmap. Nucleic Acids Res 2015; 43:W566–70 [View Article]
    [Google Scholar]
  40. Morita Y, Tomida J, Kawamura Y. Efflux-mediated fluoroquinolone resistance in the multidrug-resistant Pseudomonas aeruginosa clinical isolate PA7: identification of a novel MexS variant involved in upregulation of the mexEF-oprN multidrug efflux operon. Front Microbiol 2015; 6:8 [View Article]
    [Google Scholar]
  41. Dumas J-L, van Delden C, Perron K, Köhler T. Analysis of antibiotic resistance gene expression in Pseudomonas aeruginosa by quantitative real-time-PCR. FEMS Microbiol Lett 2006; 254:217–225 [View Article] [PubMed]
    [Google Scholar]
  42. Vandeplassche E, Sass A, Lemarcq A, Dandekar AA, Coenye T et al. In vitro evolution of Pseudomonas aeruginosa AA2 biofilms in the presence of cystic fibrosis lung microbiome members. Sci Rep 2019; 9:12859 [View Article]
    [Google Scholar]
  43. Zhang Y, Sass A, Van Acker H, Wille J, Verhasselt B et al. Coumarin reduces virulence and biofilm formation in Pseudomonas aeruginosa by affecting quorum sensing, type III secretion and C-di-GMP levels. Front Microbiol 2018; 9:1952 [View Article]
    [Google Scholar]
  44. Vandecandelaere I, Depuydt P, Nelis HJ, Coenye T. Protease production by Staphylococcus epidermidis and its effect on Staphylococcus aureus biofilms. Pathog Dis 2014; 70:321–331 [View Article] [PubMed]
    [Google Scholar]
  45. Ha DG, Kuchma SL, O’Toole GA. Plate-based assay for swarming motility in pseudomonas aeruginosa. Methods in molecular biology 1149:67–72 [View Article]
    [Google Scholar]
  46. Stiernagle T. Maintenance of C. elegans WormBook: The Online Review of C. Elegans Biology 2006 pp 1–11
    [Google Scholar]
  47. Bové M, Coenye T. The anti-virulence activity of the non-mevalonate pathway inhibitor FR900098 towards Burkholderia cenocepacia is maintained during experimental evolution. Microbiology 2022; 168: [View Article]
    [Google Scholar]
  48. Kragh KN, Gijón D, Maruri A, Antonelli A, Coppi M et al. Effective antimicrobial combination in vivo treatment predicted with microcalorimetry screening. J Antimicrob Chemother 2021; 76:1001–1009 [View Article] [PubMed]
    [Google Scholar]
  49. Scribner MR, Santos-Lopez A, Marshall CW, Deitrick C, Cooper VS. Parallel evolution of tobramycin resistance across species and environments. mBio 2020; 11:e00932-20 [View Article]
    [Google Scholar]
  50. Stokes JM, Lopatkin AJ, Lobritz MA, Collins JJ. Bacterial metabolism and antibiotic efficacy. Cell Metab 2019; 30:251–259 [View Article]
    [Google Scholar]
  51. Crabbé A, Jensen , Bjarnsholt T, Coenye T. Antimicrobial tolerance and metabolic adaptations in microbial biofilms. Trends Microbiol 2019; 27:850–863 [View Article]
    [Google Scholar]
  52. Lopatkin AJ, Stokes JM, Zheng EJ, Yang JH, Takahashi MK et al. Bacterial metabolic state more accurately predicts antibiotic lethality than growth rate. Nat Microbiol 2019; 4:2109–2117 [View Article] [PubMed]
    [Google Scholar]
  53. Lopatkin AJ, Bening SC, Manson AL, Stokes JM, Kohanski MA et al. Clinically relevant mutations in core metabolic genes confer antibiotic resistance. Science 2021; 371:eaba0862 [View Article]
    [Google Scholar]
  54. Dwyer DJ, Belenky PA, Yang JH, MacDonald IC, Martell JD et al. Antibiotics induce redox-related physiological alterations as part of their lethality. Proc Natl Acad Sci 2014; 111:E2100–9 [View Article]
    [Google Scholar]
  55. Braissant O, Wirz D, Göpfert B, Daniels AU. Use of isothermal microcalorimetry to monitor microbial activities. FEMS Microbiol Lett 2010; 303:1–8 [View Article] [PubMed]
    [Google Scholar]
  56. Bao X, Bové M, Coenye T. Organic acids and their salts potentiate the activity of selected antibiotics against Pseudomonas aeruginosa biofilms grown in a synthetic cystic fibrosis sputum medium. Antimicrob Agents Chemother 2022; 66:e0187521 [View Article]
    [Google Scholar]
  57. Macvanin M, Hughes D. Hyper-susceptibility of a fusidic acid-resistant mutant of Salmonella to different classes of antibiotics. FEMS Microbiol Lett 2005; 247:215–220 [View Article] [PubMed]
    [Google Scholar]
  58. Hickman RA, Munck C, Sommer MOA. Time-resolved tracking of mutations reveals diverse allele dynamics during Escherichia coli antimicrobial adaptive evolution to single drugs and drug pairs. Front Microbiol 2017; 8:893 [View Article]
    [Google Scholar]
  59. Xu Z, Li M, Li Y, Cao H, Miao L et al. Native CRISPR-Cas-mediated genome editing enables dissecting and sensitizing clinical multidrug-resistant P. aeruginosa. Cell Rep 2019; 29:1707–1717 [View Article]
    [Google Scholar]
  60. Fleitas Martínez O, Cardoso MH, Ribeiro SM, Franco OL. Recent advances in anti-virulence therapeutic strategies with a focus on dismantling bacterial membrane microdomains, toxin neutralization, quorum-sensing interference and biofilm inhibition. Front Cell Infect Microbiol 2019; 9:74 [View Article]
    [Google Scholar]
  61. Tian Z-X, Mac Aogáin M, O’Connor HF, Fargier E, Mooij MJ et al. MexT modulates virulence determinants in Pseudomonas aeruginosa independent of the MexEF-OprN efflux pump. Microb Pathog 2009; 47:237–241 [View Article] [PubMed]
    [Google Scholar]
  62. Köhler T, van Delden C, Curty LK, Hamzehpour MM, Pechere JC. Overexpression of the MexEF-OprN multidrug efflux system affects cell-to-cell signaling in Pseudomonas aeruginosa. J Bacteriol 2001; 183:5213–5222 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.001278
Loading
/content/journal/micro/10.1099/mic.0.001278
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error