1887

Abstract

Glutamine amidotransferase-1 domain-containing AraC-family transcriptional regulators (GATRs) are present in the genomes of many bacteria, including all species. The involvement of several characterized GATRs in amine-containing compound metabolism has been determined, but the full scope of GATR ligands and regulatory networks are still unknown. Here, we characterize ’s detection of the animal-derived amine compound creatine, a compound particularly enriched in muscle and ciliated cells by a creatine-specific GATR, PP_3665, here named CahR (reatine midoydrolase egulator). is necessary for transcription of the gene encoding creatinase () in the presence of creatine and is critical for s ability to utilize creatine as a sole source of nitrogen. The CahR/creatine regulon is small, and an electrophoretic mobility shift assay demonstrates strong and specific CahR binding only at the promoter, supporting the conclusion that much of the regulon is dependent on downstream metabolites. Phylogenetic analysis of orthologues associated with orthologues highlights a strain distribution and organization supporting probable horizontal gene transfer, particularly evident within the genus . This study identifies and characterizes the GATR that transcriptionally controls ’s metabolism of creatine, broadening the scope of known GATR ligands and suggesting GATR diversification during evolution of metabolism for aliphatic nitrogen compounds.

Funding
This study was supported by the:
  • National Institute of Allergy and Infectious Diseases (Award T32-AI055402)
    • Principle Award Recipient: LaurenA Hinkel
  • National Institute of Allergy and Infectious Diseases (Award R21AI137453)
    • Principle Award Recipient: MatthewJ Wargo
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.001145
2022-03-10
2024-05-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/168/3/mic001145.html?itemId=/content/journal/micro/10.1099/mic.0.001145&mimeType=html&fmt=ahah

References

  1. Loeschcke A, Thies S. Pseudomonas putida-a versatile host for the production of natural products. Appl Microbiol Biotechnol 2015; 99:6197–6214 [View Article] [PubMed]
    [Google Scholar]
  2. Kivisaar M. Narrative of a versatile and adept species Pseudomonas putida. J Med Microbiol 2020; 69:324–338 [View Article] [PubMed]
    [Google Scholar]
  3. Winsor GL, Griffiths EJ, Lo R, Dhillon BK, Shay JA et al. Enhanced annotations and features for comparing thousands of Pseudomonas genomes in the Pseudomonas genome database. Nucleic Acids Res 2016; 44:D646–53 [View Article] [PubMed]
    [Google Scholar]
  4. Wyss M, Kaddurah-Daouk R. Creatine and creatinine metabolism. Physiol Rev 2000; 80:1107–1213 [View Article] [PubMed]
    [Google Scholar]
  5. Yoshimoto T, Oka I, Tsuru D. Purification, crystallization, and some properties of creatine amidinohydrolase from Pseudomonas putida. J Biochem 1976; 79:1381–1383 [View Article] [PubMed]
    [Google Scholar]
  6. Afshari E, Amini-Bayat Z, Hosseinkhani S, Cloning BN. Expression and purification of Pseudomonas putida ATCC12633 creatinase. Avicenna J Med Biotechnol 2017; 9:169–175
    [Google Scholar]
  7. Schumann J, Böhm G, Schumacher G, Rudolph R, Jaenicke R. Stabilization of creatinase from Pseudomonas putida by random mutagenesis. Protein Sci 1993; 2:1612–1620 [View Article] [PubMed]
    [Google Scholar]
  8. Appleyard G, Woods DD. The pathway of creatine catabolism by Pseudomonas ovalis. J Gen Microbiol 1956; 14:351–365 [View Article] [PubMed]
    [Google Scholar]
  9. Hoeffken HW, Knof SH, Bartlett PA, Huber R, Moellering H et al. Crystal structure determination, refinement and molecular model of creatine amidinohydrolase from Pseudomonas putida. J Mol Biol 1988; 204:417–433 [View Article] [PubMed]
    [Google Scholar]
  10. Nimmo-Smith RH, Appleyard G. Studies with a Pseudomonad able to grow with creatine as main source of carbon and nitrogen. J Gen Microbiol 1956; 14:336–350 [View Article] [PubMed]
    [Google Scholar]
  11. Appleyard G. The metabolism of creatine by a pseudomonad. Biochem J 1951; 49:lxx [PubMed]
    [Google Scholar]
  12. Beuth B, Niefind K, Schomburg D. Crystal structure of creatininase from Pseudomonas putida: a novel fold and a case of convergent evolution. J Mol Biol 2003; 332:287–301 [View Article] [PubMed]
    [Google Scholar]
  13. Willsey GG, Wargo MJ. Sarcosine catabolism in Pseudomonas aeruginosa is transcriptionally regulated by SouR. J Bacteriol 2016; 198:301–310 [View Article] [PubMed]
    [Google Scholar]
  14. Harms C, Schleicher A, Collins MD, Andreesen JR. Tissierella creatinophila sp. nov., a gram-positive, anaerobic, non-spore-forming, creatinine-fermenting organism. Int J Syst Bacteriol 1998; 48 Pt 3:983–993 [View Article] [PubMed]
    [Google Scholar]
  15. Yasuhara M, Fujita S, Furukawa I, Arisue K, Kohda K et al. Continuous-flow enzymic determination of creatine in urine. Clin Chem 1981; 27:1888–1891 [View Article] [PubMed]
    [Google Scholar]
  16. Habibi S, Djedidi S, Ohkama-Ohtsu N, Sarhadi WA, Kojima K et al. Isolation and screening of indigenous plant growth-promoting rhizobacteria from different rice cultivars in afghanistan soils. Microbes Environ 2019; 34:347–355 [View Article] [PubMed]
    [Google Scholar]
  17. Yasuda M, Sugahara K, Zhang J, Ageta T, Nakayama K et al. Simultaneous determination of creatinine, creatine, and guanidinoacetic acid in human serum and urine using liquid chromatography-atmospheric pressure chemical ionization mass spectrometry. Anal Biochem 1997; 253:231–235 [View Article] [PubMed]
    [Google Scholar]
  18. Skinner JJ. Beneficial effect of creatinine and creatine on growth. Botanical Gazette 1912; 54:152–163 [View Article]
    [Google Scholar]
  19. Neidhardt FC, Bloch PL, Smith DF. Culture medium for enterobacteria. J Bacteriol 1974; 119:736–747 [View Article] [PubMed]
    [Google Scholar]
  20. LaBauve AE, Wargo MJ. Growth and laboratory maintenance of Pseudomonas aeruginosa. Curr Protoc Microbiol 2012; Chapter 6:1 [View Article] [PubMed]
    [Google Scholar]
  21. Simon R, Priefer U, Pühler A. A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram negative bacteria. Nat Biotechnol 1983; 1:784–791 [View Article]
    [Google Scholar]
  22. Shanks RMQ, Caiazza NC, Hinsa SM, Toutain CM, O’Toole GA. Saccharomyces cerevisiae-based molecular tool kit for manipulation of genes from gram-negative bacteria. Appl Environ Microbiol 2006; 72:5027–5036 [View Article] [PubMed]
    [Google Scholar]
  23. Choi KH, Schweizer HP. mini-Tn7 insertion in bacteria with single attTn7 sites: example Pseudomonas aeruginosa. Nat Protoc 2006; 1:153–161 [View Article] [PubMed]
    [Google Scholar]
  24. Choi K-H, Gaynor JB, White KG, Lopez C, Bosio CM et al. A Tn7-based broad-range bacterial cloning and expression system. Nat Methods 2005; 2:443–448 [View Article] [PubMed]
    [Google Scholar]
  25. Shanks RMQ, Caiazza NC, Hinsa SM, Toutain CM, O’Toole GA. Saccharomyces cerevisiae-based molecular tool kit for manipulation of genes from gram-negative bacteria. Appl Environ Microbiol 2006; 72:5027–5036 [View Article] [PubMed]
    [Google Scholar]
  26. Bryksin AV, Matsumura I. Overlap extension PCR cloning: a simple and reliable way to create recombinant plasmids. Biotechniques 2010; 48:463–465 [View Article] [PubMed]
    [Google Scholar]
  27. Hampel KJ, LaBauve AE, Meadows JA, Fitzsimmons LF, Nock AM et al. Characterization of the GbdR regulon in Pseudomonas aeruginosa. J Bacteriol 2014; 196:7–15 [View Article] [PubMed]
    [Google Scholar]
  28. LaBauve AE, Wargo MJ. Detection of host-derived sphingosine by Pseudomonas aeruginosa is important for survival in the murine lung. PLoS Pathog 2014; 10:e1003889 [View Article] [PubMed]
    [Google Scholar]
  29. Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 2019; 47:D607–D613 [View Article] [PubMed]
    [Google Scholar]
  30. Franceschini A, Lin J, von Mering C, Jensen LJ. SVD-phy: improved prediction of protein functional associations through singular value decomposition of phylogenetic profiles. Bioinformatics 2016; 32:1085–1087 [View Article] [PubMed]
    [Google Scholar]
  31. Jensen LJ, Kuhn M, Stark M, Chaffron S, Creevey C et al. STRING 8--a global view on proteins and their functional interactions in 630 organisms. Nucleic Acids Res 2009; 37:D412–6 [View Article] [PubMed]
    [Google Scholar]
  32. von Mering C, Jensen LJ, Kuhn M, Chaffron S, Doerks T et al. STRING 7--recent developments in the integration and prediction of protein interactions. Nucleic Acids Res 2007; 35:D358–62 [View Article] [PubMed]
    [Google Scholar]
  33. Snel B, Lehmann G, Bork P, Huynen MA. STRING: a web-server to retrieve and display the repeatedly occurring neighbourhood of a gene. Nucleic Acids Res 2000; 28:3442–3444 [View Article] [PubMed]
    [Google Scholar]
  34. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990; 215:403–410 [View Article] [PubMed]
    [Google Scholar]
  35. Dereeper A, Guignon V, Blanc G, Audic S, Buffet S et al. Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res 2008; 36:W465–9 [View Article] [PubMed]
    [Google Scholar]
  36. Meadows JA, Wargo MJ. Transcriptional regulation of carnitine catabolism in Pseudomonas aeruginosa by CdhR. mSphere 2018; 3:e00480-17 [View Article] [PubMed]
    [Google Scholar]
  37. Nock AM, Wargo MJ. Choline catabolism in Burkholderia thailandensis is regulated by multiple glutamine amidotransferase 1-containing AraC family transcriptional regulators. J Bacteriol 2016; 198:2503–2514 [View Article] [PubMed]
    [Google Scholar]
  38. Wargo MJ, Ho TC, Gross MJ, Whittaker LA, Hogan DA. GbdR regulates Pseudomonas aeruginosa plcH and pchP transcription in response to choline catabolites. Infect Immun 2009; 77:1103–1111 [View Article] [PubMed]
    [Google Scholar]
  39. Bendt AK, Beckers G, Silberbach M, Wittmann A, Burkovski A. Utilization of creatinine as an alternative nitrogen source in Corynebacterium glutamicum. Arch Microbiol 2004; 181:443–450 [View Article] [PubMed]
    [Google Scholar]
  40. Gallegos MT, Schleif R, Bairoch A, Hofmann K, Ramos JL. Arac/XylS family of transcriptional regulators. Microbiol Mol Biol Rev 1997; 61:393–410 [View Article] [PubMed]
    [Google Scholar]
  41. Meadows JA, Wargo MJ. Transcriptional regulation of carnitine catabolism in Pseudomonas aeruginosa by CdhR. mSphere 2018; 3:e00480-17 [View Article] [PubMed]
    [Google Scholar]
  42. Wargo MJ. Homeostasis and catabolism of choline and glycine betaine: lessons from Pseudomonas aeruginosa. Appl Environ Microbiol 2013; 79:2112–2120 [View Article] [PubMed]
    [Google Scholar]
  43. Park SM, Lu CD, Abdelal AT. Cloning and characterization of argR, a gene that participates in regulation of arginine biosynthesis and catabolism in Pseudomonas aeruginosa PAO1. J Bacteriol 1997; 179:5300–5308 [View Article] [PubMed]
    [Google Scholar]
  44. Lu C-D, Yang Z, Li W. Transcriptome analysis of the ArgR regulon in Pseudomonas aeruginosa. J Bacteriol 2004; 186:3855–3861 [View Article]
    [Google Scholar]
  45. Chang MC, Chang CC, Chang JC. Cloning of a creatinase gene from Pseudomonas putida in Escherichia coli by using an indicator plate. Appl Environ Microbiol 1992; 58:3437–3440 [View Article] [PubMed]
    [Google Scholar]
  46. Hong MC, Chang JC, Wu ML, Chang MC. Expression and export of Pseudomonas putida NTU-8 creatinase by Escherichia coli using the chitinase signal sequence of Aeromonas hydrophila. Biochem Genet 1998; 36:407–415 [View Article] [PubMed]
    [Google Scholar]
  47. Yoshimoto T, Oka I, Tsuru D. Creatine amidinohydrolase of Pseudomonas putida: crystallization and some properties. Arch Biochem Biophys 1976; 177:508–515 [View Article] [PubMed]
    [Google Scholar]
  48. Shimizu S, Kim JM, Shinmen Y, Yamada H. Evaluation of two alternative metabolic pathways for creatinine degradation in microorganisms. Arch Microbiol 1986; 145:322–328 [View Article]
    [Google Scholar]
  49. Ogawa J, Kim JM, Nirdnoy W, Amano Y, Yamada H et al. Purification and characterization of an ATP-dependent amidohydrolase, N-methylhydantoin amidohydrolase, from Pseudomonas putida 77. Eur J Biochem 1995; 229:284–290 [View Article] [PubMed]
    [Google Scholar]
  50. Tang TY, Wen CJ, Liu WH. Expression of the creatininase gene from Pseudomonas putida RS65 in Escherichia coli. J Ind Microbiol Biotechnol 2000; 24:2–6 [View Article]
    [Google Scholar]
  51. Shariff M, Beri K. Exacerbation of bronchiectasis by Pseudomonas monteilii: a case report. BMC Infect Dis 2017; 17:511 [View Article] [PubMed]
    [Google Scholar]
  52. Fernández M, Porcel M, de la Torre J, Molina-Henares MA, Daddaoua A et al. Analysis of the pathogenic potential of nosocomial Pseudomonas putida strains. Front Microbiol 2015; 6:871 [View Article] [PubMed]
    [Google Scholar]
  53. Harding CM, Hennon SW, Feldman MF. Uncovering the mechanisms of Acinetobacter baumannii virulence. Nat Rev Microbiol 2018; 16:91–102 [View Article] [PubMed]
    [Google Scholar]
  54. Knight DB, Rudin SD, Bonomo RA, Rather PN. Acinetobacter nosocomialis: defining the role of efflux pumps in resistance to antimicrobial therapy, surface motility, and biofilm formation. Front Microbiol 2018; 9:1902 [View Article] [PubMed]
    [Google Scholar]
  55. Vallenet D, Nordmann P, Barbe V, Poirel L, Mangenot S et al. Comparative analysis of Acinetobacters: three genomes for three lifestyles. PLoS One 2008; 3:e1805 [View Article] [PubMed]
    [Google Scholar]
  56. Ndongo S, Lagier JC, Raoult D, Fournier PE. Gorillibacterium timonense sp. nov. and Vitreoscilla massiliensis sp. nov., two new bacterial species isolated from stool specimens of obese Amazonian patients. New Microbes New Infect 2018; 23:48–51 [View Article] [PubMed]
    [Google Scholar]
  57. Xu Y, Xie Z, Wang H, Shen Z, Guo Y et al. Bacterial diversity of intestinal microbiota in patients with substance use disorders revealed by 16S rRNA gene deep sequencing. Sci Rep 2017; 7:3628 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.001145
Loading
/content/journal/micro/10.1099/mic.0.001145
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error