1887

Abstract

Transposons are genetic elements that change their intracellular genomic position by transposition and are spread horizontally between bacteria when located on plasmids. It was recently discovered that transposition from fully heterologous DNA also occurs in the course of natural transformation. Here, we characterize the molecular details and constraints of this process using the replicative transposon Tn and the naturally competent bacterium . We find that chromosomal insertion of Tn by transposition occurs at low but detectable frequencies and preferably around the terminus of replication. We show that Tn transposition is facilitated by transient expression of the transposase and resolvase encoded by the donor DNA. RecA protein is essential for the formation of a circular, double-stranded cytoplasmic intermediate from incoming donor DNA, and RecO is beneficial but not essential in this process. Absence of the recipient RecBCD nuclease stabilizes the double-stranded intermediate. Based on these results, we suggest a mechanistic model for transposition during natural transformation.

Funding
This study was supported by the:
  • KlausHarms , Norges Forskningsråd , (Award 275672)
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.001003
2020-12-03
2021-03-08
Loading full text...

Full text loading...

/deliver/fulltext/micro/167/1/micro001003.html?itemId=/content/journal/micro/10.1099/mic.0.001003&mimeType=html&fmt=ahah

References

  1. von Wintersdorff CJ, Penders J, van Niekerk JM, Mills ND, Majumder S et al. Dissemination of antimicrobial resistance in microbial ecosystems through horizontal gene transfer. Front Microbiol 2016; 7:173 [CrossRef][PubMed]
    [Google Scholar]
  2. Cassini A, Högberg LD, Plachouras D, Quattrocchi A, Hoxha A et al. Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: a population-level modelling analysis. Lancet Infect Dis 2019; 19:56–66 [CrossRef][PubMed]
    [Google Scholar]
  3. Thomas CM, Nielsen KM. Mechanisms of, and barriers to, horizontal gene transfer between bacteria. Nat Rev Microbiol 2005; 3:711–721 [CrossRef][PubMed]
    [Google Scholar]
  4. Lorenz MG, Wackernagel W. Bacterial gene transfer by natural genetic transformation in the environment. Microbiol Rev 1994; 58:563–602 [CrossRef][PubMed]
    [Google Scholar]
  5. Johnston C, Martin B, Fichant G, Polard P, Claverys J-P et al. Bacterial transformation: distribution, shared mechanisms and divergent control. Nat Rev Microbiol 2014; 12:181–196 [CrossRef][PubMed]
    [Google Scholar]
  6. Tacconelli E, Carrara E, Savoldi A, Harbarth S, Mendelson M et al. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis 2018; 18:318–327 [CrossRef][PubMed]
    [Google Scholar]
  7. Lerminiaux NA, Cameron ADS. Horizontal transfer of antibiotic resistance genes in clinical environments. Can J Microbiol 2019; 65:34–44 [CrossRef][PubMed]
    [Google Scholar]
  8. Domingues S, Rosário N, Cândido Â, Neto D, Nielsen KM et al. Competence for Natural Transformation Is Common among Clinical Strains of Resistant Acinetobacter spp. Microorganisms 2019; 7:E30 [CrossRef][PubMed]
    [Google Scholar]
  9. Traglia GM, Place K, Dotto C, Fernandez JS, Montaña S et al. Interspecies DNA acquisition by a naturally competent Acinetobacter baumannii strain. Int J Antimicrob Agents 2019; 53:483–490 [CrossRef][PubMed]
    [Google Scholar]
  10. Liebert CA, Hall RM, Summers AO. Transposon Tn21, flagship of the floating genome. Microbiol Mol Biol Rev 1999; 63:507–522 [CrossRef][PubMed]
    [Google Scholar]
  11. Carattoli A. Resistance plasmid families in Enterobacteriaceae . Antimicrob Agents Chemother 2009; 53:2227–2238 [CrossRef][PubMed]
    [Google Scholar]
  12. Partridge SR, Kwong SM, Firth N, Jensen SO. Mobile genetic elements associated with antimicrobial resistance. Clin Microbiol Rev 2018; 31:UNSPe00088–17 [CrossRef][PubMed]
    [Google Scholar]
  13. Tansirichaiya S, Rahman MA, Roberts AP. The transposon registry. Mob DNA 2019; 10:40 [CrossRef][PubMed]
    [Google Scholar]
  14. Hickman AB, Dyda F. Mechanisms of DNA transposition. Microbiol Spectr 2015; 3:MDNA3-0034–3-2014 [CrossRef][PubMed]
    [Google Scholar]
  15. Martínez T, Vázquez GJ, Aquino EE, Martínez I, Robledo IE et al. ISEcp1-mediated transposition of bla KPC into the chromosome of a clinical isolate of Acinetobacter baumannii from Puerto Rico. J Med Microbiol 2014; 63:1644–1648 [CrossRef][PubMed]
    [Google Scholar]
  16. Sheppard AE, Stoesser N, Wilson DJ, Sebra R, Kasarskis A et al. Nested russian Doll-Like genetic mobility drives rapid dissemination of the carbapenem resistance gene bla KPC . Antimicrob Agents Chemother 2016; 60:3767–3778 [CrossRef][PubMed]
    [Google Scholar]
  17. Brolund A, Rajer F, Giske CG, Melefors Ö, Titelman E et al. Dynamics of resistance plasmids in extended-spectrum-β-lactamase-producing Enterobacteriaceae during postinfection colonization. Antimicrob Agents Chemother 2019; 63: [CrossRef][PubMed]
    [Google Scholar]
  18. Evans DR, Griffith MP, Sundermann AJ, Shutt KA, Saul MI et al. Systematic detection of horizontal gene transfer across genera among multidrug-resistant bacteria in a single Hospital. eLife 2020; 9: [CrossRef]
    [Google Scholar]
  19. Domingues S, Harms K, Fricke WF, Johnsen PJ, da Silva GJ et al. Natural transformation facilitates transfer of transposons, integrons and gene cassettes between bacterial species. PLoS Pathog 2012; 8:e1002837 [CrossRef][PubMed]
    [Google Scholar]
  20. Barbe V, Vallenet D, Fonknechten N, Kreimeyer A, Oztas S et al. Unique features revealed by the genome sequence of Acinetobacter sp. ADP1, a versatile and naturally transformation competent bacterium. Nucleic Acids Res 2004; 32:5766–5779 [CrossRef][PubMed]
    [Google Scholar]
  21. Nicolas E, Lambin M, Dandoy D, Galloy C, Nguyen N et al. The Tn3-family of replicative transposons. Microbiol Spectr 2015; 3: [CrossRef][PubMed]
    [Google Scholar]
  22. Naas T, Cuzon G, Villegas M-V, Lartigue M-F, Quinn JP et al. Genetic structures at the origin of acquisition of the beta-lactamase bla KPC gene. Antimicrob Agents Chemother 2008; 52:1257–1263 [CrossRef][PubMed]
    [Google Scholar]
  23. Elliott KT, Neidle EL. Acinetobacter baylyi ADP1: transforming the choice of model organism. IUBMB Life 2011; 63:1075–1080 [CrossRef][PubMed]
    [Google Scholar]
  24. Harms K, Lunnan A, Hülter N, Mourier T, Vinner L et al. Substitutions of short heterologous DNA segments of intragenomic or extragenomic origins produce clustered genomic polymorphisms. Proc Natl Acad Sci U S A 2016; 113:15066–15071 [CrossRef][PubMed]
    [Google Scholar]
  25. Nielsen KM, van Weerelt MD, Berg TN, Bones AM, Hagler AN et al. Natural transformation and availability of transforming DNA to Acinetobacter calcoaceticus in soil microcosms. Appl Environ Microbiol 1997; 63:1945–1952 [CrossRef][PubMed]
    [Google Scholar]
  26. Overballe-Petersen S, Harms K, Orlando LAA, Mayar JVM, Rasmussen S et al. Bacterial natural transformation by highly fragmented and damaged DNA. Proc Natl Acad Sci U S A 2013; 110:19860–19865 [CrossRef][PubMed]
    [Google Scholar]
  27. Hülter N, Sørum V, Borch-Pedersen K, Liljegren MM, Utnes ALG et al. Costs and benefits of natural transformation in Acinetobacter baylyi . BMC Microbiol 2017; 17:34 [CrossRef][PubMed]
    [Google Scholar]
  28. Harms K, Wackernagel W. The RecBCD and SbcCD DNases suppress homology-facilitated illegitimate recombination during natural transformation of Acinetobacter baylyi . Microbiology 2008; 154:2437–2445 [CrossRef][PubMed]
    [Google Scholar]
  29. Harms K, Schön V, Kickstein E, Wackernagel W. The RecJ DNase strongly suppresses genomic integration of short but not long foreign DNA fragments by homology-facilitated illegitimate recombination during transformation of Acinetobacter baylyi . . Mol Microbiol 2007; 64:691–702 [CrossRef][PubMed]
    [Google Scholar]
  30. Kickstein E, Harms K, Wackernagel W. Deletions of recBCD or recD influence genetic transformation differently and are lethal together with a recJ deletion in Acinetobacter baylyi . Microbiology 2007; 153:2259–2270 [CrossRef][PubMed]
    [Google Scholar]
  31. Hanahan D. Studies on transformation of Escherichia coli with plasmids. J Mol Biol 1983; 166:557–580 [CrossRef][PubMed]
    [Google Scholar]
  32. Romanowski G, Lorenz MG, Wackernagel W. Use of polymerase chain reaction and electroporation of Escherichia coli to monitor the persistence of extracellular plasmid DNA introduced into natural soils. Appl Environ Microbiol 1993; 59:3438–3446 [CrossRef][PubMed]
    [Google Scholar]
  33. Chang AC, Cohen SN. Construction and characterization of amplifiable multicopy DNA cloning vehicles derived from the P15A cryptic miniplasmid. J Bacteriol 1978; 134:1141–1156 [CrossRef][PubMed]
    [Google Scholar]
  34. Scholz P, Haring V, Wittmann-Liebold B, Ashman K, Bagdasarian M et al. Complete nucleotide sequence and gene organization of the broad-host-range plasmid RSF1010. Gene 1989; 75:271–288 [CrossRef][PubMed]
    [Google Scholar]
  35. Cuzon G, Naas T, Nordmann P. Functional characterization of Tn4401, a Tn3-based transposon involved in bla KPC gene mobilization. Antimicrob Agents Chemother 2011; 55:5370–5373 [CrossRef][PubMed]
    [Google Scholar]
  36. Singer JT, van Tuijl JJ, Finnerty WR. Transformation and mobilization of cloning vectors in Acinetobacter spp. J Bacteriol 1986; 165:301–303 [CrossRef][PubMed]
    [Google Scholar]
  37. Crooks GE, Hon G, Chandonia J-M, Brenner SE. Weblogo: a sequence logo generator. Genome Res 2004; 14:1188–1190 [CrossRef][PubMed]
    [Google Scholar]
  38. Dower WJ, Miller JF, Ragsdale CW. High efficiency transformation of E. coli by high voltage electroporation. Nucleic Acids Res 1988; 16:6127–6145 [CrossRef][PubMed]
    [Google Scholar]
  39. Seringhaus M, Kumar A, Hartigan J, Snyder M, Gerstein M et al. Genomic analysis of insertion behavior and target specificity of mini-Tn7 and Tn3 transposons in Saccharomyces cerevisiae . Nucleic Acids Res 2006; 34:e57 [CrossRef][PubMed]
    [Google Scholar]
  40. Davies CJ, Hutchison CA. Insertion site specificity of the transposon Tn3 . . Nucleic Acids Res 1995; 23:507–514 [CrossRef][PubMed]
    [Google Scholar]
  41. Hülter N, Wackernagel W. Double illegitimate recombination events integrate DNA segments through two different mechanisms during natural transformation of Acinetobacter baylyi . Mol Microbiol 2008; 67:984–995 [CrossRef][PubMed]
    [Google Scholar]
  42. de Berardinis V, Vallenet D, Castelli V, Besnard M, Pinet A et al. A complete collection of single-gene deletion mutants of Acinetobacter baylyi ADP1. Mol Syst Biol 2008; 4:174 [CrossRef][PubMed]
    [Google Scholar]
  43. Shi Q, Huguet-Tapia JC, Peters JE. Tn917 targets the region where DNA replication terminates in Bacillus subtilis, highlighting a difference in chromosome processing in the firmicutes. J Bacteriol 2009; 191:7623–7627 [CrossRef][PubMed]
    [Google Scholar]
  44. Garsin DA, Urbach J, Huguet-Tapia JC, Peters JE, Ausubel FM et al. Construction of an Enterococcus faecalis Tn917-mediated-gene-disruption library offers insight into Tn917 insertion patterns. . J Bacteriol 2004; 186:7280–7289 [CrossRef][PubMed]
    [Google Scholar]
  45. Grueter L, Koenig O, Laufs R. Transposon mutagenesis in Staphylococcus epidermidis using the Enterococcus faecalis transposon Tn917 . FEMS Microbiol Lett 1991; 66:215–218 [CrossRef][PubMed]
    [Google Scholar]
  46. Bae T, Banger AK, Wallace A, Glass EM, Aslund F et al. Staphylococcus aureus virulence genes identified by bursa aurealis mutagenesis and nematode killing. . Proc Natl Acad Sci U S A 2004; 101:12312–12317 [CrossRef][PubMed]
    [Google Scholar]
  47. Castillo F, Benmohamed A, Szatmari G. Xer site specific recombination: double and single recombinase systems. Front Microbiol 2017; 8:453 [CrossRef][PubMed]
    [Google Scholar]
  48. Casadaban MJ, Chou J, Cohen SN. Overproduction of the Tn3 transposition protein and its role in DNA transposition. Cell 1982; 28:345–354 [CrossRef][PubMed]
    [Google Scholar]
  49. Palmen R, Vosman B, Buijsman P, Breek CK, Hellingwerf KJ et al. Physiological characterization of natural transformation in Acinetobacter calcoaceticus . J Gen Microbiol 1993; 139:295–305 [CrossRef][PubMed]
    [Google Scholar]
  50. de Vries J, Wackernagel W. Integration of foreign DNA during natural transformation of Acinetobacter sp. by homology-facilitated illegitimate recombination. Proc Natl Acad Sci U S A 2002; 99:2094–2099 [CrossRef][PubMed]
    [Google Scholar]
  51. Dillingham MS, Kowalczykowski SC. RecBCD enzyme and the repair of double-stranded DNA breaks. Microbiol Mol Biol Rev 2008; 72:642–671 [CrossRef][PubMed]
    [Google Scholar]
  52. Amundsen SK, Neiman AM, Thibodeaux SM, Smith GR. Genetic dissection of the biochemical activities of RecBCD enzyme. Genetics 1990; 126:25–40[PubMed]
    [Google Scholar]
  53. Saunders CW, Guild WR. Monomer plasmid DNA transforms Streptococcus pneumoniae . Mol Gen Genet 1981; 181:57–62 [CrossRef][PubMed]
    [Google Scholar]
  54. Kidane D, Carrasco B, Manfredi C, Rothmaier K, Ayora S et al. Evidence for different pathways during horizontal gene transfer in competent Bacillus subtilis cells. PLoS Genet 2009; 5:e1000630 [CrossRef][PubMed]
    [Google Scholar]
  55. Ryzhikov M, Gupta R, Glickman M, Korolev S. RecO protein initiates DNA recombination and strand annealing through two alternative DNA binding mechanisms. J Biol Chem 2014; 289:28846–28855 [CrossRef][PubMed]
    [Google Scholar]
  56. Mortier-Barrière I, Velten M, Dupaigne P, Mirouze N, Piétrement O et al. A key presynaptic role in transformation for a widespread bacterial protein: DprA conveys incoming ssDNA to RecA. Cell 2007; 130:824–836 [CrossRef][PubMed]
    [Google Scholar]
  57. Karudapuram S, Zhao X, Barcak GJ. DNA sequence and characterization of Haemophilus influenzae dprA +, a gene required for chromosomal but not plasmid DNA transformation. J Bacteriol 1995; 177:3235–3240 [CrossRef][PubMed]
    [Google Scholar]
  58. Ando T, Israel DA, Kusugami K, Blaser MJ. HP0333, a member of the dprA family, is involved in natural transformation in Helicobacter pylori . J Bacteriol 1999; 181:5572–5580 [CrossRef][PubMed]
    [Google Scholar]
  59. Bergé M, Mortier-Barrière I, Martin B, Claverys J-P. Transformation of Streptococcus pneumoniae relies on DprA- and RecA-dependent protection of incoming DNA single strands. Mol Microbiol 2003; 50:527–536 [CrossRef][PubMed]
    [Google Scholar]
  60. Friedrich A, Prust C, Hartsch T, Henne A, Averhoff B et al. Molecular analyses of the natural transformation machinery and identification of pilus structures in the extremely thermophilic bacterium Thermus thermophilus strain HB27. Appl Environ Microbiol 2002; 68:745–755 [CrossRef][PubMed]
    [Google Scholar]
  61. Fernández S, Kobayashi Y, Ogasawara N, Alonso JC. Analysis of the Bacillus subtilis recO gene: RecO forms part of the RecFLOR function. Mol Gen Genet 1999; 261:567–573 [CrossRef][PubMed]
    [Google Scholar]
  62. Cohen A, Clark AJ. Synthesis of linear plasmid multimers in Escherichia coli K-12. J Bacteriol 1986; 167:327–335 [CrossRef][PubMed]
    [Google Scholar]
  63. Morimatsu K, Kowalczykowski SC. RecFOR proteins load RecA protein onto gapped DNA to accelerate DNA strand exchange: a universal step of recombinational repair. Mol Cell 2003; 11:1337–1347 [CrossRef][PubMed]
    [Google Scholar]
  64. Sakai A, Cox MM. RecFOR and RecOR as distinct RecA loading pathways. J Biol Chem 2009; 284:3264–3272 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.001003
Loading
/content/journal/micro/10.1099/mic.0.001003
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error