1887

Abstract

Vitamin B12 is one of the most complex biomolecules in nature. Since few organisms can synthesize B12 de novo, most bacteria utilize highly sensitive and specialized transporters to scavenge B12 and its precursors. In Gram-negative bacteria, BtuB is the outer membrane TonB-dependent receptor for B12. In the fresh water bacterium Caulobacter crescentus , btuB is among the most highly expressed genes. In this study, we characterized the function of BtuB in C. crescentus and unveiled a potential new function of this receptor involved in cellular fitness. Under standard minimal or rich growth conditions, we found that supplements of vitamin B12 to cultures of C. crescentus provided no significant advantage in growth rate. Using a B12 methionine auxotroph, we showed that BtuB in C. crescentus is capable of transporting B12 at low pico-molar range. A btuB knockout strain displayed higher sensitivity to detergents and to changes in osmotic pressure compared to the wild-type. Electron micrographs of this knockout strain revealed a morphology defect. The sensitivity observed in the btuB knockout strain was not due to changes in membrane permeability or altered S-layer levels. Our results demonstrate that btuB deletion mutants exhibit increased susceptibility to membrane stressors, suggesting a potential role of this receptor in membrane homeostasis. Because we only tested BtuB’s function under laboratory conditions, we cannot eliminate the possibility that BtuB also plays a key role as a B12 scavenger in C. crescentus when growing in its highly variable and nutrient-limited natural environment.

Keyword(s): B12 , BtuB , Caulobacter , cobalamin and outer membrane
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000753
2019-01-16
2019-09-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/165/3/311.html?itemId=/content/journal/micro/10.1099/mic.0.000753&mimeType=html&fmt=ahah

References

  1. May KL, Silhavy TJ. Making a membrane on the other side of the wall. Biochim Biophys Acta 2017;1862:1386–1393 [CrossRef]
    [Google Scholar]
  2. Nikaido H. Prevention of drug access to bacterial targets: permeability barriers and active efflux. Science 1994;264:382–388 [CrossRef][PubMed]
    [Google Scholar]
  3. Braun V, Braun M. Iron transport and signaling in Escherichia coli. FEBS Lett 2002;529:78–85 [CrossRef][PubMed]
    [Google Scholar]
  4. Kadner RJ. Vitamin B12 transport in Escherichia coli: energy coupling between membranes. Mol Microbiol 1990;4:2027–2033 [CrossRef][PubMed]
    [Google Scholar]
  5. Ferguson AD, Deisenhofer J. Metal import through microbial membranes. Cell 2004;116:15–24 [CrossRef][PubMed]
    [Google Scholar]
  6. Postle K, Kadner RJ. Touch and go: tying TonB to transport. Mol Microbiol 2003;49:869–882 [CrossRef][PubMed]
    [Google Scholar]
  7. Gudmundsdottir A, Bradbeer C, Kadner RJ. Altered binding and transport of vitamin B12 resulting from insertion mutations in the Escherichia coli btuB gene. J Biol Chem 1988;263:14224–14230[PubMed]
    [Google Scholar]
  8. Postle K, Kadner RJ. Touch and go: tying TonB to transport. Mol Microbiol 2003;49:869–882 [CrossRef][PubMed]
    [Google Scholar]
  9. Shultis DD, Purdy MD, Banchs CN, Wiener MC. Outer membrane active transport: structure of the BtuB:TonB complex. Science 2006;312:1396–1399 [CrossRef][PubMed]
    [Google Scholar]
  10. Flores Jiménez RH, Cafiso DS. The N-terminal domain of a TonB-dependent transporter undergoes a reversible stepwise denaturation. Biochemistry 2012;51:3642–3650 [CrossRef][PubMed]
    [Google Scholar]
  11. Chimento DP, Mohanty AK, Kadner RJ, Wiener MC. Substrate-induced transmembrane signaling in the cobalamin transporter BtuB. Nat Struct Biol 2003;10:394–401 [CrossRef][PubMed]
    [Google Scholar]
  12. Escalante-Semerena JC, Warren MJ. Biosynthesis and use of cobalamin (B12). EcoSal Plus 2008;3: [CrossRef][PubMed]
    [Google Scholar]
  13. Lawrence JG, Roth JR. Evolution of coenzyme B12 synthesis among enteric bacteria: evidence for loss and reacquisition of a multigene complex. Genetics 1996;142:11–24[PubMed]
    [Google Scholar]
  14. González JC, Peariso K, Penner-Hahn JE, Matthews RG. Cobalamin-independent methionine synthase from Escherichia coli: a zinc metalloenzyme. Biochemistry 1996;35:12228–12234 [CrossRef][PubMed]
    [Google Scholar]
  15. Jeter RM. Cobalamin-dependent 1,2-propanediol utilization by Salmonella typhimurium. J Gen Microbiol 1990;136:887–896 [CrossRef][PubMed]
    [Google Scholar]
  16. Roof DM, Roth JR. Functions required for vitamin B12-dependent ethanolamine utilization in Salmonella typhimurium. J Bacteriol 1989;171:3316–3323 [CrossRef][PubMed]
    [Google Scholar]
  17. Srikumar S, Fuchs TM. Ethanolamine utilization contributes to proliferation of Salmonella enterica serovar Typhimurium in food and in nematodes. Appl Environ Microbiol 2011;77:281–290 [CrossRef][PubMed]
    [Google Scholar]
  18. Banerjee R. Chemistry and Biochemistry of B12 John Wiley & Sons; 1999
    [Google Scholar]
  19. Kurisu G, Zakharov SD, Zhalnina MV, Bano S, Eroukova VY et al. The structure of BtuB with bound colicin E3 R-domain implies a translocon. Nat Struct Biol 2003;10:948–954 [CrossRef][PubMed]
    [Google Scholar]
  20. Shin H, Lee JH, Kim H, Choi Y, Heu S et al. Receptor diversity and host interaction of bacteriophages infecting Salmonella enterica serovar Typhimurium. PLoS One 2012;7:e43392 [CrossRef][PubMed]
    [Google Scholar]
  21. Hong J, Kim KP, Heu S, Lee SJ, Adhya S et al. Identification of host receptor and receptor-binding module of a newly sequenced T5-like phage EPS7. FEMS Microbiol Lett 2008;289:202–209 [CrossRef][PubMed]
    [Google Scholar]
  22. Degnan PH, Barry NA, Mok KC, Taga ME, Goodman AL. Human gut microbes use multiple transporters to distinguish vitamin B12 analogs and compete in the gut. Cell Host Microbe 2014;15:47–57 [CrossRef][PubMed]
    [Google Scholar]
  23. Escalante-Semerena JC, Johnson MG, Roth JR. The CobII and CobIII regions of the cobalamin (vitamin B12) biosynthetic operon of Salmonella typhimurium. J Bacteriol 1992;174:24–29 [CrossRef][PubMed]
    [Google Scholar]
  24. de Sablet T, Chassard C, Bernalier-Donadille A, Vareille M, Gobert AP et al. Human microbiota-secreted factors inhibit shiga toxin synthesis by enterohemorrhagic Escherichia coli O157:H7. Infect Immun 2009;77:783–790 [CrossRef][PubMed]
    [Google Scholar]
  25. Cordonnier C, Le Bihan G, Emond-Rheault JG, Garrivier A, Harel J et al. Vitamin B12 uptake by the gut commensal bacteria bacteroides thetaiotaomicron limits the production of shiga toxin by enterohemorrhagic Escherichia coli. Toxins 2016;8:14 [CrossRef][PubMed]
    [Google Scholar]
  26. Mcadams HH, Shapiro L. System-level design of bacterial cell cycle control. FEBS Lett 2009;583:3984–3991 [CrossRef][PubMed]
    [Google Scholar]
  27. Nierman WC, Feldblyum TV, Laub MT, Paulsen IT, Nelson KE et al. Complete genome sequence of Caulobacter crescentus. Proc Natl Acad Sci USA 2001;98:4136–4141 [CrossRef][PubMed]
    [Google Scholar]
  28. Schrader JM, Li GW, Childers WS, Perez AM, Weissman JS et al. Dynamic translation regulation in Caulobacter cell cycle control. Proc Natl Acad Sci USA 2016;113:E6859E6867 [CrossRef][PubMed]
    [Google Scholar]
  29. Ely B. Genetics of Caulobacter crescentus. Methods Enzymol 1991;204:372–384[PubMed]
    [Google Scholar]
  30. Francis N, Poncin K, Fioravanti A, Vassen V, Willemart K et al. CtrA controls cell division and outer membrane composition of the pathogen Brucella abortus. Mol Microbiol 2017;103:780–797 [CrossRef][PubMed]
    [Google Scholar]
  31. Thanbichler M, Shapiro L. MipZ, a spatial regulator coordinating chromosome segregation with cell division in Caulobacter. Cell 2006;126:147–162 [CrossRef][PubMed]
    [Google Scholar]
  32. Toro E, Hong SH, McAdams HH, Shapiro L. Caulobacter requires a dedicated mechanism to initiate chromosome segregation. Proc Natl Acad Sci USA 2008;105:15435–15440 [CrossRef][PubMed]
    [Google Scholar]
  33. Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA et al. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 2009;6:343–345 [CrossRef][PubMed]
    [Google Scholar]
  34. Thanbichler M, Iniesta AA, Shapiro L. A comprehensive set of plasmids for vanillate- and xylose-inducible gene expression in Caulobacter crescentus. Nucleic Acids Res 2007;35:e137 [CrossRef][PubMed]
    [Google Scholar]
  35. Jones KH, Senft JA. An improved method to determine cell viability by simultaneous staining with fluorescein diacetate-propidium iodide. J Histochem Cytochem 1985;33:77–79 [CrossRef][PubMed]
    [Google Scholar]
  36. Ma H, Bryers JD. Non-invasive method to quantify local bacterial concentrations in a mixed culture biofilm. J Ind Microbiol Biotechnol 2010;37:1081–1089 [CrossRef][PubMed]
    [Google Scholar]
  37. Hay JJ, Rodrigo-Navarro A, Hassi K, Moulisova V, Dalby MJ et al. Living biointerfaces based on non-pathogenic bacteria support stem cell differentiation. Sci Rep 2016;6:21809 [CrossRef][PubMed]
    [Google Scholar]
  38. Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods 2012;9:671–675 [CrossRef][PubMed]
    [Google Scholar]
  39. Overton KW, Park DM, Yung MC, Dohnalkova AC, Smit J et al. Two outer membrane proteins contribute to Caulobacter crescentus cellular fitness by preventing intracellular S-layer protein accumulation. Appl Environ Microbiol 2016;82:6961–6972 [CrossRef][PubMed]
    [Google Scholar]
  40. Walker SG, Smith SH, Smit J. Isolation and comparison of the paracrystalline surface layer proteins of freshwater caulobacters. J Bacteriol 1992;174:1783–1792 [CrossRef][PubMed]
    [Google Scholar]
  41. Helliwell KE, Lawrence AD, Holzer A, Kudahl UJ, Sasso S et al. Cyanobacteria and eukaryotic algae use different chemical variants of vitamin B12. Curr Biol 2016;26:999–1008 [CrossRef][PubMed]
    [Google Scholar]
  42. Daisley KW. Monthly survey of vitamin B12 concentrations in some waters of the English Lake district. Limnol Oceanogr 1969;14:224–228 [CrossRef]
    [Google Scholar]
  43. Chang GW, Chang JT. Evidence for the B12-dependent enzyme ethanolamine deaminase in Salmonella. Nature 1975;254:150–151 [CrossRef][PubMed]
    [Google Scholar]
  44. Bradbeer C. The clostridial fermentations of choline and ethanolamine. II. Requirement for a cobamide coenzyme by an ethanolamine deaminase. J Biol Chem 1965;240:4675–4681[PubMed]
    [Google Scholar]
  45. Phadke ND, Molloy MP, Steinhoff SA, Ulintz PJ, Andrews PC et al. Analysis of the outer membrane proteome of Caulobacter crescentus by two-dimensional electrophoresis and mass spectrometry. Proteomics 2001;1:705–720 [CrossRef][PubMed]
    [Google Scholar]
  46. Hottes AK, Meewan M, Yang D, Arana N, Romero P et al. Transcriptional profiling of Caulobacter crescentus during growth on complex and minimal media. J Bacteriol 2004;186:1448–1461 [CrossRef][PubMed]
    [Google Scholar]
  47. Christen B, Abeliuk E, Collier JM, Kalogeraki VS, Passarelli B et al. The essential genome of a bacterium. Mol Syst Biol 2011;7:528 [CrossRef][PubMed]
    [Google Scholar]
  48. Ludwig ML, Matthews RG. Structure-based perspectives on B12-dependent enzymes. Annu Rev Biochem 1997;66:269–313 [CrossRef][PubMed]
    [Google Scholar]
  49. Evans JC, Huddler DP, Hilgers MT, Romanchuk G, Matthews RG et al. Structures of the N-terminal modules imply large domain motions during catalysis by methionine synthase. Proc Natl Acad Sci USA 2004;101:3729–3736 [CrossRef][PubMed]
    [Google Scholar]
  50. Peariso K, Zhou ZS, Smith AE, Matthews RG, Penner-Hahn JE. Characterization of the zinc sites in cobalamin-independent and cobalamin-dependent methionine synthase using zinc and selenium X-ray absorption spectroscopy. Biochemistry 2001;40:987–993 [CrossRef][PubMed]
    [Google Scholar]
  51. Coleman R, Holdsworth G. Effects of detergents on erythrocyte membranes: different patterns of solubilization of the membrane proteins by dihydroxy and trihydroxy bile salts. Biochem Soc Trans 1975;3:747–748 [CrossRef][PubMed]
    [Google Scholar]
  52. Helenius A, Simons K. Solubilization of membranes by detergents. Biochim Biophys Acta 1975;415:29–79 [CrossRef][PubMed]
    [Google Scholar]
  53. Hajmeer M, Ceylan E, Marsden JL, Fung DY. Impact of sodium chloride on Escherichia coli O157:H7 and Staphylococcus aureus analysed using transmission electron microscopy. Food Microbiol 2006;23:446–452 [CrossRef][PubMed]
    [Google Scholar]
  54. Breeuwer P, Abee T. Assessment of viability of microorganisms employing fluorescence techniques. Int J Food Microbiol 2000;55:193–200 [CrossRef][PubMed]
    [Google Scholar]
  55. de La Fuente-Núñez C, Mertens J, Smit J, Hancock RE. The bacterial surface layer provides protection against antimicrobial peptides. Appl Environ Microbiol 2012;78:5452–5456 [CrossRef][PubMed]
    [Google Scholar]
  56. Koval SF, Hynes SH. Effect of paracrystalline protein surface layers on predation by Bdellovibrio bacteriovorus. J Bacteriol 1991;173:2244–2249 [CrossRef][PubMed]
    [Google Scholar]
  57. Sára M, Sleytr UB. S-Layer proteins. J Bacteriol 2000;182:859–868 [CrossRef][PubMed]
    [Google Scholar]
  58. Awram P, Smit J. The Caulobacter crescentus paracrystalline S-layer protein is secreted by an ABC transporter (type I) secretion apparatus. J Bacteriol 1998;180:3062–3069[PubMed]
    [Google Scholar]
  59. Balhesteros H, Shipelskiy Y, Long NJ, Majumdar A, Katz BB et al. TonB-dependent heme/hemoglobin utilization by Caulobacter crescentus HutA. J Bacteriol 2017;199: [CrossRef][PubMed]
    [Google Scholar]
  60. Benz R, Jones MD, Younas F, Maier E, Modi N et al. OmpW of Caulobacter crescentus functions as an outer membrane channel for cations. PLoS One 2015;10:e0143557 [CrossRef][PubMed]
    [Google Scholar]
  61. Lohmiller S, Hantke K, Patzer SI, Braun V. TonB-dependent maltose transport by Caulobacter crescentus. Microbiology 2008;154:1748–1754 [CrossRef][PubMed]
    [Google Scholar]
  62. Mazzon RR, Braz VS, da Silva Neto JF, do Valle Marques M. Analysis of the Caulobacter crescentus Zur regulon reveals novel insights in zinc acquisition by TonB-dependent outer membrane proteins. BMC Genomics 2014;15:734 [CrossRef][PubMed]
    [Google Scholar]
  63. Lundrigan MD, de Veaux LC, Mann BJ, Kadner RJ. Separate regulatory systems for the repression of metE and btuB by vitamin B12 in Escherichia coli. Mol Gen Genet 1987;206:401–407 [CrossRef][PubMed]
    [Google Scholar]
  64. Fu X, Zhang J, Li T, Zhang M, Li J et al. The outer membrane protein ompw enhanced V. cholerae growth in hypersaline conditions by transporting carnitine. Front Microbiol 2017;8:2703 [CrossRef][PubMed]
    [Google Scholar]
  65. Webster RE. The tol gene products and the import of macromolecules into Escherichia coli. Mol Microbiol 1991;5:1005–1011 [CrossRef][PubMed]
    [Google Scholar]
  66. Lazdunski CJ, Bouveret E, Rigal A, Journet L, Lloubès R et al. Colicin import into Escherichia coli cells. J Bacteriol 1998;180:4993–5002[PubMed]
    [Google Scholar]
  67. Click EM, Webster RE. The TolQRA proteins are required for membrane insertion of the major capsid protein of the filamentous phage f1 during infection. J Bacteriol 1998;180:1723–1728[PubMed]
    [Google Scholar]
  68. Riechmann L, Holliger P. The C-terminal domain of TolA is the coreceptor for filamentous phage infection of E. coli. Cell 1997;90:351–360 [CrossRef][PubMed]
    [Google Scholar]
  69. Caffrey M, Morris SJ, Feigenson GW. Uranyl acetate induces gel phase formation in model lipid and biological membranes. Biophys J 1987;52:501–505 [CrossRef][PubMed]
    [Google Scholar]
  70. Lazzaroni JC, Germon P, Ray MC, Vianney A. The Tol proteins of Escherichia coli and their involvement in the uptake of biomolecules and outer membrane stability. FEMS Microbiol Lett 1999;177:191–197 [CrossRef][PubMed]
    [Google Scholar]
  71. Marks ME, Castro-Rojas CM, Teiling C, du L, Kapatral V et al. The genetic basis of laboratory adaptation in Caulobacter crescentus. J Bacteriol 2010;192:3678–3688 [CrossRef][PubMed]
    [Google Scholar]
  72. Azam F, Malfatti F. Microbial structuring of marine ecosystems. Nat Rev Microbiol 2007;5:782–791 [CrossRef][PubMed]
    [Google Scholar]
  73. Hentchel KL, Reyes Ruiz LM, Curtis PD, Fiebig A, Coleman ML et al. Genome-scale fitness profile of Caulobacter crescentus grown in natural freshwater. ISME J 2018; [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000753
Loading
/content/journal/micro/10.1099/mic.0.000753
Loading

Data & Media loading...

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error