1887

Abstract

regularly colonizes the chitinous exoskeleton of crustacean shells in the aquatic region. The type 6 secretion system (T6SS) in is an interbacterial killing device. This system is thought to provide a competitive advantage to in a polymicrobial community of the aquatic region under nutrient-poor conditions. chitin sensing is known to be initiated by the activation of a two-component sensor histidine kinase ChiS in the presence of GlcNAc (N,N′-diacetylchitobiose) residues generated by the action of chitinases on chitin. It is known that T6SS in is generally induced by chitin. However, the effect of ChiS activation on T6SS is unknown. Here, we found that ChiS inactivation resulted in impaired bacterial killing and reduced expression of T6SS genes. Active ChiS positively affected T6SS-mediated natural transformation in . ChiS depletion or inactivation also resulted in reduced colonization on insoluble chitin surfaces. Therefore, we have shown that colonization on chitinous surfaces activates ChiS, which promotes T6SS-dependent bacterial killing and horizontal gene transfer. We also highlight the importance of chitinases in T6SS upregulation.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000656
2018-05-01
2019-11-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/164/5/751.html?itemId=/content/journal/micro/10.1099/mic.0.000656&mimeType=html&fmt=ahah

References

  1. Huq A, Small EB, West PA, Huq MI, Rahman R et al. Ecological relationships between Vibrio cholerae and planktonic crustacean copepods. Appl Environ Microbiol 1983;45:275–283[PubMed]
    [Google Scholar]
  2. Li X, Roseman S. The chitinolytic cascade in Vibrios is regulated by chitin oligosaccharides and a two-component chitin catabolic sensor/kinase. Proc Natl Acad Sci USA 2004;101:627–631 [CrossRef][PubMed]
    [Google Scholar]
  3. Chourashi R, Mondal M, Sinha R, Debnath A, das S et al. Role of a sensor histidine kinase ChiS of Vibrio cholerae in pathogenesis. Int J Med Microbiol 2016;306:657–665 [CrossRef][PubMed]
    [Google Scholar]
  4. Hunt DE, Gevers D, Vahora NM, Polz MF. Conservation of the chitin utilization pathway in the Vibrionaceae. Appl Environ Microbiol 2008;74:44–51 [CrossRef][PubMed]
    [Google Scholar]
  5. Yamamoto S, Mitobe J, Ishikawa T, Wai SN, Ohnishi M et al. Regulation of natural competence by the orphan two-component system sensor kinase ChiS involves a non-canonical transmembrane regulator in Vibrio cholerae. Mol Microbiol 2014;91:326–347 [CrossRef][PubMed]
    [Google Scholar]
  6. Meibom KL, Blokesch M, Dolganov NA, Wu CY, Schoolnik GK. Chitin induces natural competence in Vibrio cholerae. Science 2005;310:1824–1827 [CrossRef][PubMed]
    [Google Scholar]
  7. Yamamoto S, Izumiya H, Mitobe J, Morita M, Arakawa E et al. Identification of a chitin-induced small RNA that regulates translation of the tfoX gene, encoding a positive regulator of natural competence in Vibrio cholerae. J Bacteriol 2011;193:1953–1965 [CrossRef][PubMed]
    [Google Scholar]
  8. Lo Scrudato M, Blokesch M. The regulatory network of natural competence and transformation of Vibrio cholerae. PLoS Genet 2012;8:e1002778 [CrossRef][PubMed]
    [Google Scholar]
  9. Lo Scrudato M, Blokesch M. A transcriptional regulator linking quorum sensing and chitin induction to render Vibrio cholerae naturally transformable. Nucleic Acids Res 2013;41:3644–3658 [CrossRef][PubMed]
    [Google Scholar]
  10. Seitz P, Blokesch M. DNA-uptake machinery of naturally competent Vibrio cholerae. Proc Natl Acad Sci USA 2013;110:17987–17992 [CrossRef][PubMed]
    [Google Scholar]
  11. Antonova ES, Bernardy EE, Hammer BK. Natural competence in Vibrio cholerae is controlled by a nucleoside scavenging response that requires CytR-dependent anti-activation. Mol Microbiol 2012;86:1215–1231 [CrossRef][PubMed]
    [Google Scholar]
  12. Watve SS, Thomas J, Hammer BK. CytR is a global positive regulator of competence, type VI secretion, and chitinases in Vibrio cholerae. PLoS One 2015;10:e0138834 [CrossRef][PubMed]
    [Google Scholar]
  13. Meibom KL, Li XB, Nielsen AT, Wu CY, Roseman S et al. The Vibrio cholerae chitin utilization program. Proc Natl Acad Sci USA 2004;101:2524–2529 [CrossRef][PubMed]
    [Google Scholar]
  14. Borgeaud S, Metzger LC, Scrignari T, Blokesch M. The type VI secretion system of Vibrio cholerae fosters horizontal gene transfer. Science 2015;347:63–67 [CrossRef][PubMed]
    [Google Scholar]
  15. Ho BT, Dong TG, Mekalanos JJ. A view to a kill: the bacterial type VI secretion system. Cell Host Microbe 2014;15:9–21 [CrossRef][PubMed]
    [Google Scholar]
  16. Pukatzki S, Ma AT, Sturtevant D, Krastins B, Sarracino D et al. Identification of a conserved bacterial protein secretion system in Vibrio cholerae using the Dictyostelium host model system. Proc Natl Acad Sci USA 2006;103:1528–1533 [CrossRef][PubMed]
    [Google Scholar]
  17. Pukatzki S, McAuley SB, Miyata ST. The type VI secretion system: translocation of effectors and effector-domains. Curr Opin Microbiol 2009;12:11–17 [CrossRef][PubMed]
    [Google Scholar]
  18. Russell AB, Peterson SB, Mougous JD. Type VI secretion system effectors: poisons with a purpose. Nat Rev Microbiol 2014;12:137–148 [CrossRef][PubMed]
    [Google Scholar]
  19. Thomas J, Watve SS, Ratcliff WC, Hammer BK. Horizontal gene transfer of functional type VI killing genes by natural transformation. MBio 2017;8:e00654-17 [CrossRef][PubMed]
    [Google Scholar]
  20. Boyer F, Fichant G, Berthod J, Vandenbrouck Y, Attree I. Dissecting the bacterial type VI secretion system by a genome wide in silico analysis: what can be learned from available microbial genomic resources?. BMC Genomics 2009;10:104 [CrossRef][PubMed]
    [Google Scholar]
  21. Pukatzki S, Ma AT, Revel AT, Sturtevant D, Mekalanos JJ. Type VI secretion system translocates a phage tail spike-like protein into target cells where it cross-links actin. Proc Natl Acad Sci USA 2007;104:15508–15513 [CrossRef][PubMed]
    [Google Scholar]
  22. Costa TR, Felisberto-Rodrigues C, Meir A, Prevost MS, Redzej A et al. Secretion systems in Gram-negative bacteria: structural and mechanistic insights. Nat Rev Microbiol 2015;13:343–359 [CrossRef][PubMed]
    [Google Scholar]
  23. Basler M, Pilhofer M, Henderson GP, Jensen GJ, Mekalanos JJ. Type VI secretion requires a dynamic contractile phage tail-like structure. Nature 2012;483:182–186 [CrossRef][PubMed]
    [Google Scholar]
  24. Dalia AB, Lazinski DW, Camilli A. Identification of a membrane-bound transcriptional regulator that links chitin and natural competence in Vibrio cholerae. MBio 2014;5:e01028-13 [CrossRef][PubMed]
    [Google Scholar]
  25. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001;25:402–408 [CrossRef][PubMed]
    [Google Scholar]
  26. Miller J. Experiments in Molecular Genetics New York: Cold Spring Harbor Laboratory; 1972; pp.352–355
    [Google Scholar]
  27. Mondal M, Nag D, Koley H, Saha DR, Chatterjee NS. The Vibrio cholerae extracellular chitinase ChiA2 is important for survival and pathogenesis in the host intestine. PLoS One 2014;9:e103119 [CrossRef][PubMed]
    [Google Scholar]
  28. Blokesch M. Chitin colonization, chitin degradation and chitin-induced natural competence of Vibrio cholerae are subject to catabolite repression. Environ Microbiol 2012;14:1898–1912 [CrossRef][PubMed]
    [Google Scholar]
  29. Bordi C, Lamy MC, Ventre I, Termine E, Hachani A et al. Regulatory RNAs and the HptB/RetS signalling pathways fine-tune Pseudomonas aeruginosa pathogenesis. Mol Microbiol 2010;76:1427–1443 [CrossRef][PubMed]
    [Google Scholar]
  30. Ventre I, Goodman AL, Vallet-Gely I, Vasseur P, Soscia C et al. Multiple sensors control reciprocal expression of Pseudomonas aeruginosa regulatory RNA and virulence genes. Proc Natl Acad Sci USA 2006;103:171–176 [CrossRef][PubMed]
    [Google Scholar]
  31. Wang M, Luo Z, Du H, Xu S, Ni B et al. Molecular characterization of a functional type VI secretion system in Salmonella enterica serovar Typhi. Curr Microbiol 2011;63:22–31 [CrossRef][PubMed]
    [Google Scholar]
  32. Metzger LC, Stutzmann S, Scrignari T, van der Henst C, Matthey N et al. Independent regulation of type VI secretion in Vibrio cholerae by TfoX and TfoY. Cell Rep 2016;15:951–958 [CrossRef][PubMed]
    [Google Scholar]
  33. Bernardy EE, Turnsek MA, Wilson SK, Tarr CL, Hammer BK. Diversity of clinical and environmental isolates of Vibrio cholerae in natural transformation and contact-dependent bacterial killing indicative of type VI secretion system activity. Appl Environ Microbiol 2016;82:2833–2842 [CrossRef][PubMed]
    [Google Scholar]
  34. Sana TG, Flaugnatti N, Lugo KA, Lam LH, Jacobson A et al. Salmonella Typhimurium utilizes a T6SS-mediated antibacterial weapon to establish in the host gut. Proc Natl Acad Sci USA 2016;113:E5044E5051 [CrossRef][PubMed]
    [Google Scholar]
  35. Gulig PA, Tucker MS, Thiaville PC, Joseph JL, Brown RN. USER friendly cloning coupled with chitin-based natural transformation enables rapid mutagenesis of Vibrio vulnificus. Appl Environ Microbiol 2009;75:4936–4949 [CrossRef][PubMed]
    [Google Scholar]
  36. Pollack-Berti A, Wollenberg MS, Ruby EG. Natural transformation of Vibrio fischeri requires tfoX and tfoY. Environ Microbiol 2010;12:2302–2311 [CrossRef][PubMed]
    [Google Scholar]
  37. Uchiyama T, Kaneko R, Yamaguchi J, Inoue A, Yanagida T et al. Uptake of N,N'-diacetylchitobiose [(GlcNAc)2] via the phosphotransferase system is essential for chitinase production by Serratia marcescens 2170. J Bacteriol 2003;185:1776–1782 [CrossRef][PubMed]
    [Google Scholar]
  38. McNally L, Bernardy E, Thomas J, Kalziqi A, Pentz J et al. Killing by Type VI secretion drives genetic phase separation and correlates with increased cooperation. Nat Commun 2017;8:14371 [CrossRef][PubMed]
    [Google Scholar]
  39. Schwarz S, West TE, Boyer F, Chiang WC, Carl MA et al. Burkholderia type VI secretion systems have distinct roles in eukaryotic and bacterial cell interactions. PLoS Pathog 2010;6:e100106814 [CrossRef][PubMed]
    [Google Scholar]
  40. Abuaita BH, Withey JH. Bicarbonate Induces Vibrio cholerae virulence gene expression by enhancing ToxT activity. Infect Immun 2009;77:4111–4120 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000656
Loading
/content/journal/micro/10.1099/mic.0.000656
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error