1887

Abstract

Rather than being homogenous diffusion-dominated structures, biological membranes can exhibit areas with distinct composition and characteristics, commonly termed as lipid domains. Arguably the most comprehensively studied examples in bacteria are domains formed by cardiolipin, which have been functionally linked to protein targeting, the cell division process and the mode of action of membrane-targeting antimicrobials. Cardiolipin domains were originally identified in the Gram-negative model organism based on preferential staining by the fluorescent membrane dye nonylacridine orange (NAO), and later reported to also exist in other Gram-negative and -positive bacteria. Recently, the lipid-specificity of NAO has been questioned based on studies conducted in . This prompted us to reanalyse cardiolipin domains in the Gram-positive model organism . Here we show that logarithmically growing does not form microscopically detectable cardiolipin-specific lipid domains, and that NAO is not a specific stain for cardiolipin in this organism.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000639
2018-04-01
2019-12-13
Loading full text...

Full text loading...

/deliver/fulltext/micro/164/4/475.html?itemId=/content/journal/micro/10.1099/mic.0.000639&mimeType=html&fmt=ahah

References

  1. Singer SJ, Nicolson GL. The fluid mosaic model of the structure of cell membranes. Science 1972;175:720–731 [CrossRef][PubMed]
    [Google Scholar]
  2. Nicolson GL. The fluid-mosaic model of membrane structure: still relevant to understanding the structure, function and dynamics of biological membranes after more than 40 years. Biochim Biophys Acta 2014;1838:1451–1466 [CrossRef][PubMed]
    [Google Scholar]
  3. Vereb G, Szöllosi J, Matkó J, Nagy P, Farkas T et al. Dynamic, yet structured: the cell membrane three decades after the Singer-Nicolson model. Proc Natl Acad Sci USA 2003;100:8053–8058 [CrossRef][PubMed]
    [Google Scholar]
  4. Mileykovskaya E, Dowhan W. Cardiolipin membrane domains in prokaryotes and eukaryotes. Biochim Biophys Acta 2009;1788:2084–2091 [CrossRef][PubMed]
    [Google Scholar]
  5. Mileykovskaya E, Dowhan W. Visualization of phospholipid domains in Escherichia coli by using the cardiolipin-specific fluorescent dye 10-N-nonyl acridine orange. J Bacteriol 2000;182:1172–1175 [CrossRef][PubMed]
    [Google Scholar]
  6. Koppelman CM, den Blaauwen T, Duursma MC, Heeren RM, Nanninga N. Escherichia coli minicell membranes are enriched in cardiolipin. J Bacteriol 2001;183:6144–6147 [CrossRef][PubMed]
    [Google Scholar]
  7. Huang KC, Mukhopadhyay R, Wingreen NS. A curvature-mediated mechanism for localization of lipids to bacterial poles. PLoS Comput Biol 2006;2:e151 [CrossRef][PubMed]
    [Google Scholar]
  8. Mukhopadhyay R, Huang KC, Wingreen NS. Lipid localization in bacterial cells through curvature-mediated microphase separation. Biophys J 2008;95:1034–1049 [CrossRef][PubMed]
    [Google Scholar]
  9. Renner LD, Weibel DB. Cardiolipin microdomains localize to negatively curved regions of Escherichia coli membranes. Proc Natl Acad Sci USA 2011;108:6264–6269 [CrossRef][PubMed]
    [Google Scholar]
  10. Lewis RN, Mcelhaney RN. Surface charge markedly attenuates the nonlamellar phase-forming propensities of lipid bilayer membranes: calorimetric and (31)P-nuclear magnetic resonance studies of mixtures of cationic, anionic, and zwitterionic lipids. Biophys J 2000;79:1455–1464 [CrossRef][PubMed]
    [Google Scholar]
  11. Shiomi D, Yoshimoto M, Homma M, Kawagishi I. Helical distribution of the bacterial chemoreceptor via colocalization with the Sec protein translocation machinery. Mol Microbiol 2006;60:894–906 [CrossRef][PubMed]
    [Google Scholar]
  12. Romantsov T, Stalker L, Culham DE, Wood JM. Cardiolipin controls the osmotic stress response and the subcellular location of transporter ProP in Escherichia coli. J Biol Chem 2008;283:12314–12323 [CrossRef][PubMed]
    [Google Scholar]
  13. Matsumoto K, Kusaka J, Nishibori A, Hara H. Lipid domains in bacterial membranes. Mol Microbiol 2006;61:1110–1117 [CrossRef][PubMed]
    [Google Scholar]
  14. Nishibori A, Kusaka J, Hara H, Umeda M, Matsumoto K. Phosphatidylethanolamine domains and localization of phospholipid synthases in Bacillus subtilis membranes. J Bacteriol 2005;187:2163–2174 [CrossRef][PubMed]
    [Google Scholar]
  15. Romantsov T, Battle AR, Hendel JL, Martinac B, Wood JM. Protein localization in Escherichia coli cells: comparison of the cytoplasmic membrane proteins ProP, LacY, ProW, AqpZ, MscS, and MscL. J Bacteriol 2010;192:912–924 [CrossRef][PubMed]
    [Google Scholar]
  16. Tran TT, Panesso D, Mishra NN, Mileykovskaya E, Guan Z et al. Daptomycin-resistant Enterococcus faecalis diverts the antibiotic molecule from the division septum and remodels cell membrane phospholipids. MBio 2013;4:e00281-13 [CrossRef][PubMed]
    [Google Scholar]
  17. Rashid R, Veleba M, Kline KA. Focal Targeting of the Bacterial Envelope by Antimicrobial Peptides. Front Cell Dev Biol 2016;4:55 [CrossRef][PubMed]
    [Google Scholar]
  18. Epand RM, Epand RF. Lipid domains in bacterial membranes and the action of antimicrobial agents. Biochim Biophys Acta 2009;1788:289–294 [CrossRef][PubMed]
    [Google Scholar]
  19. Malanovic N, Lohner K. Antimicrobial peptides targeting Gram-positive bacteria. Pharmaceuticals 2016;9:59 [CrossRef][PubMed]
    [Google Scholar]
  20. Oliver PM, Crooks JA, Leidl M, Yoon EJ, Saghatelian A et al. Localization of anionic phospholipids in Escherichia coli cells. J Bacteriol 2014;196:3386–3398 [CrossRef][PubMed]
    [Google Scholar]
  21. Kawai F, Shoda M, Harashima R, Sadaie Y, Hara H et al. Cardiolipin domains in Bacillus subtilis marburg membranes. J Bacteriol 2004;186:1475–1483 [CrossRef][PubMed]
    [Google Scholar]
  22. Barbe V, Cruveiller S, Kunst F, Lenoble P, Meurice G et al. From a consortium sequence to a unified sequence: the Bacillus subtilis 168 reference genome a decade later. Microbiology 2009;155:1758–1775 [CrossRef][PubMed]
    [Google Scholar]
  23. Hamoen LW, Smits WK, de Jong A, Holsappel S, Kuipers OP. Improving the predictive value of the competence transcription factor (ComK) binding site in Bacillus subtilis using a genomic approach. Nucleic Acids Res 2002;30:5517–5528 [CrossRef][PubMed]
    [Google Scholar]
  24. Strahl H, Bürmann F, Hamoen LW. The actin homologue MreB organizes the bacterial cell membrane. Nat Commun 2014;5:3442 [CrossRef][PubMed]
    [Google Scholar]
  25. Te Winkel JD, Gray DA, Seistrup KH, Hamoen LW, Strahl H. Analysis of antimicrobial-triggered membrane depolarization using voltage sensitive dyes. Front Cell Dev Biol 2016;4:29 [CrossRef][PubMed]
    [Google Scholar]
  26. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M et al. Fiji: an open-source platform for biological-image analysis. Nat Methods 2012;9:676–682 [CrossRef][PubMed]
    [Google Scholar]
  27. Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol 1959;37:911–917 [CrossRef][PubMed]
    [Google Scholar]
  28. Tindall BJ, Sikorski J, Smibert RA, Krieg NR. Phenotypic characterization and the principles of comparative systematics. In Methods for General and Molecular Microbiology, 3rd ed. Washington, DCASM Press: American Society of Microbiology; 2007
    [Google Scholar]
  29. Strahl H, Hamoen LW. Membrane potential is important for bacterial cell division. Proc Natl Acad Sci USA 2010;107:12281–12286 [CrossRef][PubMed]
    [Google Scholar]
  30. Hazel JR. Thermal adaptation in biological membranes: is homeoviscous adaptation the explanation?. Annu Rev Physiol 1995;57:19–42 [CrossRef][PubMed]
    [Google Scholar]
  31. Parsons JB, Rock CO. Bacterial lipids: metabolism and membrane homeostasis. Prog Lipid Res 2013;52:249–276 [CrossRef][PubMed]
    [Google Scholar]
  32. Greenspan P, Fowler SD. Spectrofluorometric studies of the lipid probe, nile red. J Lipid Res 1985;26:781–789[PubMed]
    [Google Scholar]
  33. Kucherak OA, Oncul S, Darwich Z, Yushchenko DA, Arntz Y et al. Switchable nile red-based probe for cholesterol and lipid order at the outer leaflet of biomembranes. J Am Chem Soc 2010;132:4907–4916 [CrossRef][PubMed]
    [Google Scholar]
  34. Schirner K, Errington J. The cell wall regulator σI specifically suppresses the lethal phenotype of mbl mutants in Bacillus subtilis. J Bacteriol 2009;191:1404–1413 [CrossRef][PubMed]
    [Google Scholar]
  35. Morein S, Andersson A, Rilfors L, Lindblom G. Wild-type Escherichia coli cells regulate the membrane lipid composition in a "window" between gel and non-lamellar structures. J Biol Chem 1996;271:6801–6809 [CrossRef][PubMed]
    [Google Scholar]
  36. Matsumoto K, Okada M, Horikoshi Y, Matsuzaki H, Kishi T et al. Cloning, sequencing, and disruption of the Bacillus subtilis psd gene coding for phosphatidylserine decarboxylase. J Bacteriol 1998;180:100–106[PubMed]
    [Google Scholar]
  37. Salzberg LI, Helmann JD. Phenotypic and transcriptomic characterization of Bacillus subtilis mutants with grossly altered membrane composition. J Bacteriol 2008;190:7797–7807 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000639
Loading
/content/journal/micro/10.1099/mic.0.000639
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error