1887

Abstract

The paradoxical response of to drugs prescribed for dental and clinical practices has complicated treatment guidelines and raised the need for further investigation. We conducted a high throughput study on concomitant transcriptome and proteome dynamics in a time course to assess behaviour under a sub-inhibitory concentration of ampicillin. Temporal changes at the transcriptome and proteome level were monitored to cover essential genes and proteins over a physiological map of intricate pathways. Our findings revealed that translation was the functional category in that was most enriched in essential proteins. Moreover, essential proteins in this category demonstrated the greatest conservation across 2774 bacterial proteomes, in comparison to other essential functional categories like cell wall biosynthesis and energy production. In comparison to non-essential proteins, essential proteins were less likely to contain ‘degradation-prone’ amino acids at their N-terminal position, suggesting a longer half-life. Despite the ampicillin-induced stress, the transcriptional up-regulation of amino acid-tRNA synthetases and proteomic elevation of amino acid biosynthesis enzymes favoured the enriched components of essential proteins revealing ‘proteomic signatures’ that can be used to bridge the genotype–phenotype gap of under ampicillin stress. Furthermore, we identified a significant correlation between the levels of mRNA and protein for essential genes and detected essential protein-enriched pathways differentially regulated through a persistent stress response pattern at late time points. We propose that the current findings will help characterize a bacterial model to study the dynamics of essential genes and proteins under clinically relevant stress conditions.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000595
2018-02-01
2020-01-17
Loading full text...

Full text loading...

/deliver/fulltext/micro/164/2/173.html?itemId=/content/journal/micro/10.1099/mic.0.000595&mimeType=html&fmt=ahah

References

  1. Jenkinson HF, Lamont RJ. Oral microbial communities in sickness and in health. Trends Microbiol 2005;13:589–595 [CrossRef][PubMed]
    [Google Scholar]
  2. Kreth J, Merritt J, Shi W, Qi F. Competition and coexistence between Streptococcus mutans and Streptococcus sanguinis in the dental biofilm. J Bacteriol 2005;187:7193–7203 [CrossRef][PubMed]
    [Google Scholar]
  3. Kolenbrander PE, London J. Adhere today, here tomorrow: oral bacterial adherence. J Bacteriol 1993;175:3247–3252 [CrossRef][PubMed]
    [Google Scholar]
  4. Hall MR, McGillicuddy E, Kaplan LJ. Biofilm: basic principles, pathophysiology, and implications for clinicians. Surg Infect 2014;15:1–7 [CrossRef][PubMed]
    [Google Scholar]
  5. Hoen B, Duval X. Infective Endocarditis. N Engl J Med Overseas Ed 2013;368:1425–1433 [CrossRef]
    [Google Scholar]
  6. Caufield PW, Dasanayake AP, Li Y, Pan Y, Hsu J et al. Natural history of Streptococcus sanguinis in the oral cavity of infants: evidence for a discrete window of infectivity. Infect Immun 2000;68:4018–4023 [CrossRef][PubMed]
    [Google Scholar]
  7. Ahmed R, Hassall T, Morland B, Gray J. Viridans streptococcus bacteremia in children on chemotherapy for cancer: an underestimated problem. Pediatr Hematol Oncol 2003;20:439–444 [CrossRef][PubMed]
    [Google Scholar]
  8. Xu P, Alves JM, Kitten T, Brown A, Chen Z et al. Genome of the opportunistic pathogen Streptococcus sanguinis. J Bacteriol 2007;189:3166–3175 [CrossRef][PubMed]
    [Google Scholar]
  9. Xu P, Ge X, Chen L, Wang X, Dou Y et al. Genome-wide essential gene identification in Streptococcus sanguinis. Sci Rep 2011;1:125 [CrossRef][PubMed]
    [Google Scholar]
  10. El-Rami FE, Sleiman FT, Abdelnoor AM. Identification and antibacterial resistance of bacteria isolated from poultry. Pol J Microbiol 2012;61:323–326[PubMed][Crossref]
    [Google Scholar]
  11. Hiltunen T, Virta M, Laine AL. Antibiotic resistance in the wild: an eco-evolutionary perspective. Philos Trans R Soc Lond B Biol Sci 1712;2017:20160039
    [Google Scholar]
  12. Sweeney LC, Dave J, Chambers PA, Heritage J. Antibiotic resistance in general dental practice-a cause for concern?. J Antimicrob Chemother 2004;53:567–576 [CrossRef][PubMed]
    [Google Scholar]
  13. Robles Raya P, de Frutos Echaniz E, Moreno Millán N, Mas Casals A, Sánchez Callejas A et al. [I'm going to the dentist: antibiotic as a prevention or as a treatment?]. Aten Primaria 2013;45:216–221 [CrossRef][PubMed]
    [Google Scholar]
  14. Levi ME, Eusterman VD. Oral infections and antibiotic therapy. Otolaryngol Clin North Am 2011;44:57–78 [CrossRef][PubMed]
    [Google Scholar]
  15. Pipalova R, Vlcek J, Slezak R. The trends in antibiotic use by general dental practitioners in the Czech Republic (2006–2012). Int Dent J 2014;64:138–143 [CrossRef][PubMed]
    [Google Scholar]
  16. Gupta S, Sakhuja A, McGrath E, Asmar B. Trends, microbiology, and outcomes of infective endocarditis in children during 2000–2010 in the United States. Congenit Heart Dis 2017;12:196–201 [CrossRef][PubMed]
    [Google Scholar]
  17. Mackie AS, Liu W, Savu A, Marelli AJ, Kaul P. Infective endocarditis hospitalizations before and after the 2007 American Heart Association prophylaxis guidelines. Can J Cardiol 2016;32:942–948 [CrossRef][PubMed]
    [Google Scholar]
  18. American Dental Association Council on Scientific Affairs Combating antibiotic resistance. J Am Dent Assoc 2004;135:484–487[PubMed][Crossref]
    [Google Scholar]
  19. Bryskier A. Antimicrobial Agents: Antibacterials and Antifungals Washington, DC: ASM Press; 2005;[Crossref]
    [Google Scholar]
  20. Loewe L, Plummer N. Streptococcus in subacute bacterial endocarditis. J Am Med Assoc 1946;130:257 [CrossRef][PubMed]
    [Google Scholar]
  21. Kim SM, Kim HC, Lee SW. Characterization of antibiotic resistance determinants in oral biofilms. J Microbiol 2011;49:595–602 [CrossRef][PubMed]
    [Google Scholar]
  22. Anderson GG, O'Toole GA. Innate and induced resistance mechanisms of bacterial biofilms. Curr Top Microbiol Immunol 2008;322:85–105[PubMed]
    [Google Scholar]
  23. Mcdermott W. Microbial persistence. Yale J Biol Med 1958;30:257–291[PubMed]
    [Google Scholar]
  24. Balaban NQ, Merrin J, Chait R, Kowalik L, Leibler S. Bacterial persistence as a phenotypic switch. Science 2004;305:1622–1625 [CrossRef][PubMed]
    [Google Scholar]
  25. Kussell E, Kishony R, Balaban NQ, Leibler S. Bacterial persistence: a model of survival in changing environments. Genetics 2005;169:1807–1814 [CrossRef][PubMed]
    [Google Scholar]
  26. McCune RM, Feldmann FM, McDermott W. Microbial persistence. II. Characteristics of the sterile state of tubercle bacilli. J Exp Med 1966;123:469–486 [CrossRef][PubMed]
    [Google Scholar]
  27. Karbach J, Callaway AS, Willershausen B, Wagner W, Al-Nawas B. Multiple resistance to betalactam antibiotics, azithromycin or moxifloxacin in implant associated bacteria. Clin Lab 2013;59:381–387 [CrossRef][PubMed]
    [Google Scholar]
  28. Süzük S, Kaşkatepe B, Çetin M. Antimicrobial susceptibility against penicillin, ampicillin and vancomycin of viridans group Streptococcus in oral microbiota of patients at risk of infective endocarditis. Infez Med 2016;24:190–193[PubMed]
    [Google Scholar]
  29. Moyed HS, Bertrand KP. hipA, a newly recognized gene of Escherichia coli K-12 that affects frequency of persistence after inhibition of murein synthesis. J Bacteriol 1983;155:768–775[PubMed]
    [Google Scholar]
  30. Wang B, Kuramitsu HK. A pleiotropic regulator, Frp, affects exopolysaccharide synthesis, biofilm formation, and competence development in Streptococcus mutans. Infect Immun 2006;74:4581–4589 [CrossRef][PubMed]
    [Google Scholar]
  31. Dörr T, Vulić M, Lewis K. Ciprofloxacin causes persister formation by inducing the TisB toxin in Escherichia coli. PLoS Biol 2010;8:e1000317 [CrossRef][PubMed]
    [Google Scholar]
  32. Koonin EV. Comparative genomics, minimal gene-sets and the last universal common ancestor. Nat Rev Microbiol 2003;1:127–136 [CrossRef][PubMed]
    [Google Scholar]
  33. Albalat R, Cañestro C. Evolution by gene loss. Nat Rev Genet 2016;17:379–391 [CrossRef]
    [Google Scholar]
  34. Papp B, Notebaart RA, Pál C. Systems-biology approaches for predicting genomic evolution. Nat Rev Genet 2011;12:591–602 [CrossRef][PubMed]
    [Google Scholar]
  35. Glass JI, Assad-Garcia N, Alperovich N, Yooseph S, Lewis MR et al. Essential genes of a minimal bacterium. Proc Natl Acad Sci USA 2006;103:425–430 [CrossRef][PubMed]
    [Google Scholar]
  36. Ge X, Kitten T, Chen Z, Lee SP, Munro CL et al. Identification of Streptococcus sanguinis genes required for biofilm formation and examination of their role in endocarditis virulence. Infect Immun 2008;76:2551–2559 [CrossRef][PubMed]
    [Google Scholar]
  37. CLSI Performance standards for antimicrobial susceptibility testing, 25th informational supplement. M100-S25. Clinical and Laboratory Standards Institute, Wayne, PA. 2015;3594–96
  38. Huang Daw, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 2009;37:1–13 [CrossRef][PubMed]
    [Google Scholar]
  39. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 2003;13:2498–2504 [CrossRef][PubMed]
    [Google Scholar]
  40. Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R et al. Circos: an information aesthetic for comparative genomics. Genome Res 2009;19:1639–1645 [CrossRef][PubMed]
    [Google Scholar]
  41. McClure R, Balasubramanian D, Sun Y, Bobrovskyy M, Sumby P et al. Computational analysis of bacterial RNA-Seq data. Nucleic Acids Res 2013;41:e140 [CrossRef][PubMed]
    [Google Scholar]
  42. Huang Daw, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 2009;4:44–57 [CrossRef][PubMed]
    [Google Scholar]
  43. El-Rami F, Nelson K, Xu P. Proteomic approach for extracting cytoplasmic proteins from Streptococcus sanguinis using mass spectrometry. J Mol Biol Res 2017;7:50–57 [CrossRef][PubMed]
    [Google Scholar]
  44. Vizcaíno JA, Deutsch EW, Wang R, Csordas A, Reisinger F et al. ProteomeXchange provides globally coordinated proteomics data submission and dissemination. Nat Biotechnol 2014;32:223–226 [CrossRef][PubMed]
    [Google Scholar]
  45. Vizcaíno JA, Côté RG, Csordas A, Dianes JA, Fabregat A et al. The PRoteomics IDEntifications (PRIDE) database and associated tools: status in 2013. Nucleic Acids Res 2013;41:D1063–D1069 [CrossRef][PubMed]
    [Google Scholar]
  46. Wool IG. Extraribosomal functions of ribosomal proteins. Trends Biochem Sci 1996;21:164–165 [CrossRef][PubMed]
    [Google Scholar]
  47. Guo M, Schimmel P. Essential nontranslational functions of tRNA synthetases. Nat Chem Biol 2013;9:145–153 [CrossRef][PubMed]
    [Google Scholar]
  48. Loveland AB, Bah E, Madireddy R, Zhang Y, Brilot AF et al. Ribosome•RelA structures reveal the mechanism of stringent response activation. Elife 2016;5: [CrossRef][PubMed]
    [Google Scholar]
  49. Zhang T, Zhu J, Wei S, Luo Q, Li L et al. The roles of RelA/(p)ppGpp in glucose-starvation induced adaptive response in the zoonotic Streptococcus suis. Sci Rep 2016;6:27169 [CrossRef][PubMed]
    [Google Scholar]
  50. Stouthamer AH. A theoretical study on the amount of ATP required for synthesis of microbial cell material. Antonie van Leeuwenhoek 1973;39:545–565 [CrossRef][PubMed]
    [Google Scholar]
  51. Varshavsky A. The N-end rule. Cold Spring Harb Symp Quant Biol 1995;60:461–478 [CrossRef][PubMed]
    [Google Scholar]
  52. Ramos JL, Martínez-Bueno M, Molina-Henares AJ, Terán W, Watanabe K et al. The TetR family of transcriptional repressors. Microbiol Mol Biol Rev 2005;69:326–356 [CrossRef][PubMed]
    [Google Scholar]
  53. Aleksandrov A, Schuldt L, Hinrichs W, Simonson T. Tet repressor induction by tetracycline: a molecular dynamics, continuum electrostatics, and crystallographic study. J Mol Biol 2008;378:898–912 [CrossRef][PubMed]
    [Google Scholar]
  54. Selinger DW, Saxena RM, Cheung KJ, Church GM, Rosenow C. Global RNA half-life analysis in Escherichia coli reveals positional patterns of transcript degradation. Genome Res 2003;13:216–223 [CrossRef][PubMed]
    [Google Scholar]
  55. Mandelstam J. The intracellular turnover of protein and nucleic acids and its role in biochemical differentiation. Bacteriol Rev 1960;24:289–308[PubMed]
    [Google Scholar]
  56. Brockmann R, Beyer A, Heinisch JJ, Wilhelm T. Posttranscriptional expression regulation: what determines translation rates?. PLoS Comput Biol 2007;3:e57 [CrossRef][PubMed]
    [Google Scholar]
  57. Nie L, Wu G, Zhang W. Correlation between mRNA and protein abundance in Desulfovibrio vulgaris: a multiple regression to identify sources of variations. Biochem Biophys Res Commun 2006;339:603–610 [CrossRef][PubMed]
    [Google Scholar]
  58. Jayapal KP, Philp RJ, Kok Y-J, Yap MGS, Sherman DH et al. Uncovering genes with divergent mRNA-protein dynamics in Streptomyces coelicolor. PLoS One 2008;3:e2097 [CrossRef]
    [Google Scholar]
  59. Berghoff BA, Konzer A, Mank NN, Looso M, Rische T et al. Integrative “omics”-approach discovers dynamic and regulatory features of bacterial stress responses. PLoS Genet 2013;9:e1003576 [CrossRef]
    [Google Scholar]
  60. Lu P, Vogel C, Wang R, Yao X, Marcotte EM. Absolute protein expression profiling estimates the relative contributions of transcriptional and translational regulation. Nat Biotechnol 2007;25:117–124 [CrossRef]
    [Google Scholar]
  61. Gygi SP, Rist B, Gerber SA, Turecek F, Gelb MH et al. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol 1999;17:994–999 [CrossRef]
    [Google Scholar]
  62. Schmidt MW, Houseman A, Ivanov AR, Wolf DA. Comparative proteomic and transcriptomic profiling of the fission yeast Schizosaccharomyces pombe. Mol Syst Biol 2007;3:79 [CrossRef]
    [Google Scholar]
  63. Andersson SG, Kurland CG. Codon preferences in free-living microorganisms. Microbiological reviews 1990;54:198–210
    [Google Scholar]
  64. Drummond DA, Bloom JD, Adami C, Wilke CO, Arnold FH. Why highly expressed proteins evolve slowly. Proc Natl Acad Sci USA 2005;102:14338–14343 [CrossRef]
    [Google Scholar]
  65. Kudla G, Murray AW, Tollervey D, Plotkin JB. Coding-sequence determinants of gene expression in Escherichia coli. Science 2009;324:255–258 [CrossRef]
    [Google Scholar]
  66. Bergmann S, Rohde M, Chhatwal GS, Hammerschmidt S. alpha-Enolase of Streptococcus pneumoniae is a plasmin(ogen)-binding protein displayed on the bacterial cell surface. Mol Microbiol 2001;40:1273–1287 [CrossRef]
    [Google Scholar]
  67. Spellerberg B, Cundell DR, Sandros J, Pearce BJ, Idänpään-Heikkilä I et al. Pyruvate oxidase, as a determinant of virulence in Streptococcus pneumoniae. Mol Microbiol 1996;19:803–813 [CrossRef]
    [Google Scholar]
  68. Hughes MJG et al. Identification of major outer surface proteins of Streptococcus agalactiae. Infect Immun 2002;70:1254–1259 [CrossRef]
    [Google Scholar]
  69. Tuller T, Kupiec M, Ruppin E. Determinants of protein abundance and translation efficiency in S. cerevisiae. PLoS Comput Biol 2007;3:e248 [CrossRef]
    [Google Scholar]
  70. Schrimpf SP, Weiss M, Reiter L, Ahrens CH, Jovanovic M et al. Comparative functional analysis of the Caenorhabditis elegans and Drosophila melanogaster proteomes. PLoS Biol 2009;7:e1000048 [CrossRef]
    [Google Scholar]
  71. Brochier C, Philippe H, Moreira D. The evolutionary history of ribosomal protein RpS14: horizontal gene transfer at the heart of the ribosome. Trends in Genetics 2000;16:529–533 [CrossRef]
    [Google Scholar]
  72. Podkovyrov S, Larson TJ. Lipid biosynthetic genes and a ribosomal protein gene are cotranscribed. FEBS letters 1995;368:429–431[Crossref]
    [Google Scholar]
  73. Len ACL, Harty DW, Jacques NA. Stress-responsive proteins are upregulated in Streptococcus mutans during acid tolerance. Microbiology 2004;150:1339–1351 [CrossRef]
    [Google Scholar]
  74. Koczula A, Jarek M, Visscher C, Valentin-Weigand P, Goethe R et al. Transcriptomic analysis reveals selective metabolic adaptation of Streptococcus suis to porcine blood and cerebrospinal fluid. Pathogens 2017;6:[Crossref]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000595
Loading
/content/journal/micro/10.1099/mic.0.000595
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error