- Volume 164, Issue 2, 2018
Volume 164, Issue 2, 2018
- Review
-
-
-
The algal chloroplast as a synthetic biology platform for production of therapeutic proteins
More LessThe chloroplast of Chlamydomonas reinhardtii and other microalgae represents an attractive new platform for the synthesis of recombinant therapeutics using synthetic biology (synbio) approaches. Transgenes can be designed in silico, assembled from validated DNA parts and inserted at precise and predetermined locations within the chloroplast genome to give stable synthesis of a desired recombinant protein. Numerous recent examples of different therapeutic proteins produced successfully in the C. reinhardtii chloroplast highlight the potential of this green alga as a simple, low-cost and benign host. Furthermore, some of the features of the alga may offer additional advantages over more-established microbial, mammalian or plant-based systems. These include efficient folding and accumulation of the product in the chloroplast; a lack of contaminating toxins or infectious agents; reduced downstream processing requirements; the possibility to make complex therapeutics such as immunotoxins; and the opportunity to use the whole alga as a low-cost oral vaccine. In this paper we review the current status of algal chloroplast engineering with respect to therapeutic proteins. We also consider future advances in synbio tools, together with improvements to recipient strains, which will allow the design of bespoke strains with high levels of productivity.
-
-
- Biotechnology
-
-
-
Recombinant expression and characterisation of the oxygen-sensitive 2-enoate reductase from Clostridium sporogenes
More Less‘Ene’-reductases have attracted significant attention for the preparation of chemical intermediates and biologically active products. To date, research has been focussed primarily on Old Yellow Enzyme-like proteins, due to their ease of handling, whereas 2-enoate reductases from clostridia have received much less attention, because of their oxygen sensitivity and a lack of suitable expression systems. A hypothetical 2-enoate reductase gene, fldZ, was identified in Clostridium sporogenes DSM 795. The encoded protein shares a high degree of homology to clostridial FMN- and FAD-dependent 2-enoate reductases, including the cinnamic acid reductase proposed to be involved in amino acid metabolism in proteolytic clostridia. The gene was cloned and overexpressed in Escherichia coli. Successful expression depended on the use of strictly anaerobic conditions for both growth and enzyme preparation, since FldZ was oxygen-sensitive. The enzyme reduced aromatic enoates, such as cinnamic acid or p-coumaric acid, but not short chain unsaturated aliphatic acids. The β,β-disubstituted nitroalkene, (E)-1-nitro-2-phenylpropene, was reduced to enantiopure (R)-1-nitro-2-phenylpropane with a yield of 90 %. By contrast, the α,β-disubstituted nitroalkene, (E)-2-nitro-1-phenylpropene, was reduced with a moderate yield of 56 % and poor enantioselectivity (16 % ee for (S)-2-nitro-1-phenylpropane). The availability of an expression system for this recombinant clostridial 2-enoate reductase will facilitate future characterisation of this unusual class of ‘ene’-reductases, and expand the biocatalytic toolbox available for enantioselective hydrogenation of carbon-carbon double bonds.
-
-
-
-
Efficient bio-production of citramalate using an engineered Escherichia coli strain
More LessCitramalic acid is a central intermediate in a combined biocatalytic and chemocatalytic route to produce bio-based methylmethacrylate, the monomer used to manufacture Perspex and other high performance materials. We developed an engineered E. coli strain and a fed-batch bioprocess to produce citramalate at concentrations in excess of 80 g l−1 in only 65 h. This exceptional efficiency was achieved by designing the production strain and the fermentation system to operate synergistically. Thus, a single gene encoding a mesophilic variant of citramalate synthase from Methanococcus jannaschii, CimA3.7, was expressed in E. coli to convert acetyl-CoA and pyruvate to citramalate, and the ldhA and pflB genes were deleted. By using a bioprocess with a continuous, growth-limiting feed of glucose, these simple interventions diverted substrate flux directly from central metabolism towards formation of citramalate, without problematic accumulation of acetate. Furthermore, the nutritional requirements of the production strain could be satisfied through the use of a mineral salts medium supplemented only with glucose (172 g l−1 in total) and 1.4 g l−1 yeast extract. Using this system, citramalate accumulated to 82±1.5 g l−1, with a productivity of 1.85 g l−1 h−1 and a conversion efficiency of 0.48 gcitramalate g−1 glucose. The new bioprocess forms a practical first step for integrated bio- and chemocatalytic production of methylmethacrylate.
-
- Host-Microbe Interaction
-
-
-
Increased productivity in poultry birds by sub-lethal dose of antibiotics is arbitrated by selective enrichment of gut microbiota, particularly short-chain fatty acid producers
More LessAntibiotics are widely used at sub-lethal concentrations as a feed supplement to enhance poultry productivity. To understand antibiotic-induced temporal changes in the structure and function of gut microbiota of chicken, two flocks were maintained for six weeks on a carbohydrate- and protein-rich diet. The feed in the conventional diet (CD) group was supplemented with sub-lethal doses of chlorotetracycline, virginiamycin and amoxicillin, while the organic diet (OD) had no such addition. Antibiotic-fed birds were more productive, with a lower feed conversion ratio (FCR). Their faecal samples also had higher total heterotrophic bacterial load and antibiotic resistance capability. Deep sequencing of 16S rDNA V1-V2 amplicons revealed Firmicutes as the most dominant phylum at all time points, with the predominant presence of Lactobacillales members in the OD group. The productivity indicator, i.e. higher Firmicutes:Bacteroidetes ratio, particularly in the late growth phase, was more marked in CD amplicon sequences, which was supported by culture-based enumerations on selective media. CD datasets also showed the prevalence of known butyrate-producing genera such as Faecalibacterium, Ruminococcus, Blautia, Coprococcus and Bacteroides, which correlates closely with their higher PICRUSt-based in silico predicted ‘glycan biosynthesis and metabolism’-related Kyoto Encyclopedia of Genes and Genomes (KEGG) orthologues. Semi-quantitative end-point PCR targeting of the butyryl-CoA: acetate CoA-transferase gene also confirmed butyrate producers as being late colonizers, particularly in antibiotic-fed birds in both the CD flocks and commercial rearing farms. Thus, antibiotics preferentially enrich bacterial populations, particularly short-chain fatty acid producers that can efficiently metabolize hitherto undigestable feed material such as glycans, thereby increasing the energy budget of the host and its productivity.
-
-
-
-
Galactooligosaccharide supplementation provides protection against Citrobacter rodentium-induced colitis without limiting pathogen burden
Many enteric pathogens, including Salmonella and enteropathogenic and enterohemorrhagic Escherichia coli, express adhesins that recognize and bind to carbohydrate moieties expressed on epithelial cells. An attractive strategy for inhibiting bacterial adherence employs molecules that mimic these epithelial binding sites. Prebiotic oligosaccharides are non-digestible, fermentable fibres capable of modulating the gut microbiota. Moreover, they may act as molecular decoys that competitively inhibit adherence of pathogens to host cells. In particular, galactooligosaccharides (GOS) and other prebiotic fibres have been shown to inhibit pathogen adherence to epithelial cells in vitro. In the present study, we determined the ability of prophylactic GOS administration to reduce enteric pathogen adherence both in vitro and in vivo as well as protect against intestinal inflammation. GOS supplementation significantly reduced the adherence of the epithelial-adherent murine bacterial pathogen Citrobacter rodentium in a dose-dependent manner to the surface of epithelial cells in vitro. A 1- to 2-log reduction in bacterial adherence was observed at the lowest and highest doses tested, respectively. However, mouse studies revealed that treatment with GOS neither reduced the adherence of C. rodentium to the distal colon nor decreased its dissemination to systemic organs. Despite the absence of adherence inhibition, colonic disease scores for GOS-treated, C. rodentium-infected mice were significantly lower than those of untreated C. rodentium-infected animals (P=0.028). Together, these data suggest that GOS has a direct protective effect in ameliorating disease severity following C. rodentium infection through an anti-adherence-independent mechanism.
-
- Physiology and Metabolism
-
-
-
Glucose can be transported and utilized in Escherichia coli by an altered or overproduced N-acetylglucosamine phosphotransferase system (PTS)
More LessEscherichia coli Δglk ΔmanZ ΔptsG glucose- strains that lack the glucose phosphotransferase system (PTS) and the mannose PTS as well as glucokinase have been widely used by researchers studying the PTS. In this study we show that both fast- and slow-growing spontaneous glucose+ revertants can be readily obtained from Δglk ΔmanZ ΔptsG glucose- strains. All of the fast-growing revertants either altered the N-acetylglucosamine PTS or caused its overproduction by inactivating the NagC repressor protein, which regulates the N-acetylglucosamine PTS, and these revertants could utilize either glucose or N-acetylglucosamine as a sole carbon source. When a ΔnagE deletion, which abolishes the N-acetylglucosamine PTS, was introduced into the Δglk ΔmanZ ΔptsG glucose- strains, fast-growing revertants could no longer be isolated. Based on our results and other studies, it is clear that the N-acetylglucosamine PTS is the most easily adaptable PTS for transporting and phosphorylating glucose, other than the glucose PTS and mannose PTS, which are the primary glucose transport systems. While the slow-growing glucose+revertants were not characterized, they were likely mutations that other researchers have observed before and affect other PTSs or sugar kinases.
-
-
-
-
Analysis of essential gene dynamics under antibiotic stress in Streptococcus sanguinis
More LessThe paradoxical response of Streptococcus sanguinis to drugs prescribed for dental and clinical practices has complicated treatment guidelines and raised the need for further investigation. We conducted a high throughput study on concomitant transcriptome and proteome dynamics in a time course to assess S. sanguinis behaviour under a sub-inhibitory concentration of ampicillin. Temporal changes at the transcriptome and proteome level were monitored to cover essential genes and proteins over a physiological map of intricate pathways. Our findings revealed that translation was the functional category in S. sanguinis that was most enriched in essential proteins. Moreover, essential proteins in this category demonstrated the greatest conservation across 2774 bacterial proteomes, in comparison to other essential functional categories like cell wall biosynthesis and energy production. In comparison to non-essential proteins, essential proteins were less likely to contain ‘degradation-prone’ amino acids at their N-terminal position, suggesting a longer half-life. Despite the ampicillin-induced stress, the transcriptional up-regulation of amino acid-tRNA synthetases and proteomic elevation of amino acid biosynthesis enzymes favoured the enriched components of essential proteins revealing ‘proteomic signatures’ that can be used to bridge the genotype–phenotype gap of S. sanguinis under ampicillin stress. Furthermore, we identified a significant correlation between the levels of mRNA and protein for essential genes and detected essential protein-enriched pathways differentially regulated through a persistent stress response pattern at late time points. We propose that the current findings will help characterize a bacterial model to study the dynamics of essential genes and proteins under clinically relevant stress conditions.
-
-
-
Analysis of the Mycoplasma bovis lactate dehydrogenase reveals typical enzymatic activity despite the presence of an atypical catalytic site motif
More LessThe lactate dehydrogenase (LDH) of Mycoplasma genitalium has been predicted to also act as a malate dehydrogenase (MDH), but there has been no experimental validation of this hypothesized dual function for any mollicute. Our analysis of the metabolite profile of Mycoplasma bovis using gas chromatography/mass spectrometry (GC/MS) and liquid chromatography/mass spectrometry (LC/MS) detected malate, suggesting that there may be MDH activity in M. bovis. To investigate whether the putative l-LDH enzyme of M. bovis has a dual function (MDH and LDH), we performed bioinformatic and functional biochemical analyses. Although the amino acid sequence and predicted structural analysis of M. bovis l-LDH revealed unusual residues within the catalytic site, suggesting that it may have the flexibility to possess a dual function, our biochemical studies using recombinant M. bovis -LDH did not detect any MDH activity. However, we did show that the enzyme has typical LDH activity that could be inhibited by both MDH substrates oxaloacetate (OAA) and malate, suggesting that these substrates may be able to bind to M. bovis LDH. Inhibition of the conversion of pyruvate to lactate by OAA may be one method the mycoplasma cell uses to reduce the potential for accumulation of intracellular lactate.
-
-
-
A novel mechanism of fluconazole: fungicidal activity through dose-dependent apoptotic responses in Candida albicans
More LessFluconazole (FLC) is a well-known fungistatic agent that inhibits ergosterol biosynthesis. We showed that FLC exhibits dose-dependent fungicidal activity, and investigated the fungicidal mechanism of FLC on Candida albicans. To confirm the relationship between fungicidal activity and the inhibition of ergosterol, we assessed membrane dysfunctions via propidium iodide influx and potassium leakage, as well as morphological change. Interestingly, while membrane disruption was not observed at all tested concentrations of FLC, potassium efflux and cell shrinkage were observed at high dosages of FLC (HDF). Low-dosage FLC (LDF) treatment did not induce significant changes. Next, we examined whether the fungicidal activity of FLC was associated with apoptosis in C. albicans. FLC caused dose-dependent apoptotic responses, including phosphatidylserine externalization and DNA fragmentation. It was also involved in glutathione depletion followed by oxidative damage. In particular, unlike LDF, HDF leads to the disruption of mitochondrial homeostasis, including mitochondrial membrane depolarization and accumulation of calcium and reactive oxygen species. HDF-induced mitochondrial dysfunction promoted the release of cytochrome c from mitochondria to the cytosol, and activated intracellular metacaspase. In conclusion, the dose-dependent fungicidal activity of FLC was due to an apoptotic response in C. albicans.
-
-
-
Molecular characterization and regulation of operons for asparagine and aspartate uptake and utilization in Pseudomonas aeruginosa
More LessPseudomonas aeruginosa can utilize proteogenic amino acids as the sole source of carbon and nitrogen. In particular, utilization of l-Asp and l-Asn is insensitive to carbon catabolite repression as strong growth remains in the mutants devoid of the essential CbrAB activators of most catabolic genes. Transcriptome analysis was conducted to identify genes for the catabolism, uptake and regulation of these two amino acids. Gene inactivation and growth phenotype analysis established two asparaginases AsnA and AsnB for the degradation of l-Asn to l-Asp, whereas only AnsB is required for the deamidation of d-Asn to d-Asp. While d-Asp is a dead-end product, conversion of l-Asp to fumarate is catalysed by an aspartase AspA as further evidenced by enzyme kinetics. The results of measuring promoter-lacZ expression in vivo and mobility shift assays in vitro demonstrated that asnR and aspR encode two transcriptional regulators in response to l-Asn and l-Asp, respectively, for the induction of the ansPA operon and the aspA gene. Exogenous l-Glu also caused induction of the aspA gene, most likely due to its conversion to l-Asp by the aspartate transaminase AspC. Expression of several transporters were found inducible by l-Asn and/or l-Asp, including AatJQMP for acid amino acids, DctA and DctPQM for C4-dicarboxylates, and PA5530 for C5-dicarboxylates. In summary, a complete pathway and regulation for l-Asn and l-Asp catabolism was established in this study. Cross induction of three transport systems for dicarboxylic acids may provide a physiological explanation for the insensitivity of l-Asn and l-Asp utilization to carbon catabolite repression.
-
-
-
Acinetobacter baumannii isolate BAL_212 from Vietnam produces the K57 capsular polysaccharide containing a rarely occurring amino sugar N-acetylviosamine
More LessThe structures of capsular polysaccharides (CPSs) produced by different Acinetobacter baumannii strains have proven to be invaluable in confirming the role of specific genes in the synthesis of rare sugars through the correlation of genetic content at the CPS biosynthesis locus with sugars found in corresponding CPS structures. A module of four genes (rmlA, rmlB, vioA and vioB) was identified in the KL57 capsule biosynthesis gene cluster of A. baumannii isolate BAL_212 from Vietnam. These genes were predicted to direct the synthesis of 4-acetamido-4,6-dideoxy-d-glucose (N-acetylviosamine, d-Qui4NAc) and the K57 CPS was found to contain this monosaccharide. The K57 structure was determined and, in addition to d-Qui4NAc, included three N-acetylgalactosamine residues in the main chain, with a single glucose side branch. The KL57 gene cluster has not been found in any other A. baumannii genomes, but the rmlA-rmlB-vioA-vioB module is present in the KL119 gene cluster that would likely produce a d-Qui4NAc-containing CPS.
-
- Regulation
-
-
-
OpaR and RpoS are positive regulators of a virulence factor PrtA in Vibrio parahaemolyticus
More LessPrtA is an extracellular serine protease of Vibrio parahaemolyticus and has haemolytic and cytotoxic activities. Many extracellular proteases have been shown to be required for nutrient intake and the infection mechanism of vibrios. In this study, we report that OpaR, a quorum sensing regulator, and RpoS, a general stress response regulator, play important roles in the PrtA regulation pathway. Extracellular protease activity was highest during the late-log growth of Vibrio parahaemolyticus no.93 (VP93). The absence of PrtA distinctly decreased the extracellular protease activity. Deletion of opaR or rpoS alone reduced PrtA-specific activity of VP93. Quantitative reverse-transcriptase PCR and Western blot analysis suggested that OpaR and RpoS promote PrtA expression at the transcriptional level and affect the amount of extracellular PrtA. A luciferase assay revealed that OpaR regulates prtA on the prtA promoter region. Electrophoretic mobility shift assays indicated that the purified His-OpaR was able to bind specifically to two sequences (PrtA-1 and PrtA-2) of the prtA promoter region. Footprinting analysis showed that OpaR regulates prtA by binding to the promoter region of prtA at positions –269 to –246 and –88 to –68 from the prtA translational start site. Together, the results suggest that PrtA was upregulated by two global regulators, OpaR and RpoS.
-
-
Volumes and issues
-
Volume 170 (2024)
-
Volume 169 (2023)
-
Volume 168 (2022)
-
Volume 167 (2021)
-
Volume 166 (2020)
-
Volume 165 (2019)
-
Volume 164 (2018)
-
Volume 163 (2017)
-
Volume 162 (2016)
-
Volume 161 (2015)
-
Volume 160 (2014)
-
Volume 159 (2013)
-
Volume 158 (2012)
-
Volume 157 (2011)
-
Volume 156 (2010)
-
Volume 155 (2009)
-
Volume 154 (2008)
-
Volume 153 (2007)
-
Volume 152 (2006)
-
Volume 151 (2005)
-
Volume 150 (2004)
-
Volume 149 (2003)
-
Volume 148 (2002)
-
Volume 147 (2001)
-
Volume 146 (2000)
-
Volume 145 (1999)
-
Volume 144 (1998)
-
Volume 143 (1997)
-
Volume 142 (1996)
-
Volume 141 (1995)
-
Volume 140 (1994)
-
Volume 139 (1993)
-
Volume 138 (1992)
-
Volume 137 (1991)
-
Volume 136 (1990)
-
Volume 135 (1989)
-
Volume 134 (1988)
-
Volume 133 (1987)
-
Volume 132 (1986)
-
Volume 131 (1985)
-
Volume 130 (1984)
-
Volume 129 (1983)
-
Volume 128 (1982)
-
Volume 127 (1981)
-
Volume 126 (1981)
-
Volume 125 (1981)
-
Volume 124 (1981)
-
Volume 123 (1981)
-
Volume 122 (1981)
-
Volume 121 (1980)
-
Volume 120 (1980)
-
Volume 119 (1980)
-
Volume 118 (1980)
-
Volume 117 (1980)
-
Volume 116 (1980)
-
Volume 115 (1979)
-
Volume 114 (1979)
-
Volume 113 (1979)
-
Volume 112 (1979)
-
Volume 111 (1979)
-
Volume 110 (1979)
-
Volume 109 (1978)
-
Volume 108 (1978)
-
Volume 107 (1978)
-
Volume 106 (1978)
-
Volume 105 (1978)
-
Volume 104 (1978)
-
Volume 103 (1977)
-
Volume 102 (1977)
-
Volume 101 (1977)
-
Volume 100 (1977)
-
Volume 99 (1977)
-
Volume 98 (1977)
-
Volume 97 (1976)
-
Volume 96 (1976)
-
Volume 95 (1976)
-
Volume 94 (1976)
-
Volume 93 (1976)
-
Volume 92 (1976)
-
Volume 91 (1975)
-
Volume 90 (1975)
-
Volume 89 (1975)
-
Volume 88 (1975)
-
Volume 87 (1975)
-
Volume 86 (1975)
-
Volume 85 (1974)
-
Volume 84 (1974)
-
Volume 83 (1974)
-
Volume 82 (1974)
-
Volume 81 (1974)
-
Volume 80 (1974)
-
Volume 79 (1973)
-
Volume 78 (1973)
-
Volume 77 (1973)
-
Volume 76 (1973)
-
Volume 75 (1973)
-
Volume 74 (1973)
-
Volume 73 (1972)
-
Volume 72 (1972)
-
Volume 71 (1972)
-
Volume 70 (1972)
-
Volume 69 (1971)
-
Volume 68 (1971)
-
Volume 67 (1971)
-
Volume 66 (1971)
-
Volume 65 (1971)
-
Volume 64 (1970)
-
Volume 63 (1970)
-
Volume 62 (1970)
-
Volume 61 (1970)
-
Volume 60 (1970)
-
Volume 59 (1969)
-
Volume 58 (1969)
-
Volume 57 (1969)
-
Volume 56 (1969)
-
Volume 55 (1969)
-
Volume 54 (1968)
-
Volume 53 (1968)
-
Volume 52 (1968)
-
Volume 51 (1968)
-
Volume 50 (1968)
-
Volume 49 (1967)
-
Volume 48 (1967)
-
Volume 47 (1967)
-
Volume 46 (1967)
-
Volume 45 (1966)
-
Volume 44 (1966)
-
Volume 43 (1966)
-
Volume 42 (1966)
-
Volume 41 (1965)
-
Volume 40 (1965)
-
Volume 39 (1965)
-
Volume 38 (1965)
-
Volume 37 (1964)
-
Volume 36 (1964)
-
Volume 35 (1964)
-
Volume 34 (1964)
-
Volume 33 (1963)
-
Volume 32 (1963)
-
Volume 31 (1963)
-
Volume 30 (1963)
-
Volume 29 (1962)
-
Volume 28 (1962)
-
Volume 27 (1962)
-
Volume 26 (1961)
-
Volume 25 (1961)
-
Volume 24 (1961)
-
Volume 23 (1960)
-
Volume 22 (1960)
-
Volume 21 (1959)
-
Volume 20 (1959)
-
Volume 19 (1958)
-
Volume 18 (1958)
-
Volume 17 (1957)
-
Volume 16 (1957)
-
Volume 15 (1956)
-
Volume 14 (1956)
-
Volume 13 (1955)
-
Volume 12 (1955)
-
Volume 11 (1954)
-
Volume 10 (1954)
-
Volume 9 (1953)
-
Volume 8 (1953)
-
Volume 7 (1952)
-
Volume 6 (1952)
-
Volume 5 (1951)
-
Volume 4 (1950)
-
Volume 3 (1949)
-
Volume 2 (1948)
-
Volume 1 (1947)