1887

Abstract

Host cell adhesion assays that provide quantitative insight on the potential of lactic acid bacteria (LAB) to inhibit adhesion of intestinal pathogens can be leveraged for the development of niche-specific anti-adhesion therapy. Herein, we report a dual-colour flow cytometry (FCM) analysis to assess the ability of probiotic Lactobacillus plantarum strains to impede adhesion of Enterococcus faecalis, Listeria monocytogenes and Staphylococcus aureus onto HT-29 cells. FCM in conjunction with a hierarchical cluster analysis could discern the anti-adhesion potential of L. plantarum strains, wherein the efficacy of L. plantarum DF9 was on a par with the probiotic L. rhamnosus GG. Combination of FCM with principal component analysis illustrated the relative influence of LAB strains on adhesion parameters k d and e m of the pathogen and identified probiotic LAB suitable for anti-adhesion intervention. The analytical merit of the FCM analysis was captured in host cell adhesion assays that measured relative elimination of adhered LAB vis-à-vis pathogens, on exposure to either LAB bacteriocins or therapeutic antibiotics. It is envisaged that the dual-colour FCM-based adhesion assay described herein would enable a fundamental understanding of the host cell adhesion process and stimulate interest in probiotic LAB as safe anti-adhesion therapeutic agents against gastrointestinal pathogens.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000561
2017-11-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/163/12/1822.html?itemId=/content/journal/micro/10.1099/mic.0.000561&mimeType=html&fmt=ahah

References

  1. Ferrer M, Martins dos Santos VAP, Ott SJ, Moya A. Gut microbiota disturbance during antibiotic therapy. Gut Microbes 2014; 5: 64– 70 [CrossRef]
    [Google Scholar]
  2. Chagnot C, Listrat A, Astruc T, Desvaux M. Bacterial adhesion to animal tissues: protein determinants for recognition of extracellular matrix components. Cell Microbiol 2012; 14: 1687– 1696 [CrossRef] [PubMed]
    [Google Scholar]
  3. Foster TJ, Geoghegan JA, Ganesh VK, Höök M. Adhesion, invasion and evasion: the many functions of the surface proteins of Staphylococcus aureus. Nat Rev Microbiol 2014; 12: 49– 62 [CrossRef] [PubMed]
    [Google Scholar]
  4. Prince T, Mcbain AJ, O'Neill CA. Lactobacillus reuteri protects epidermal keratinocytes from Staphylococcus aureus-induced cell death by competitive exclusion. Appl Environ Microbiol 2012; 78: 5119– 5126 [CrossRef] [PubMed]
    [Google Scholar]
  5. Krachler AM, Orth K. Targeting the bacteria–host interface. Virulence 2013; 4: 284– 294 [CrossRef]
    [Google Scholar]
  6. Paton AW, Morona R, Paton JC. Designer probiotics for prevention of enteric infections. Nat Rev Microbiol 2006; 4: 193– 200 [CrossRef] [PubMed]
    [Google Scholar]
  7. Salminen S, Nybom S, Meriluoto J, Collado MC, Vesterlund S et al. Interaction of probiotics and pathogens–benefits to human health?. Curr Opin Biotechnol 2010; 21: 157– 167 [CrossRef] [PubMed]
    [Google Scholar]
  8. Quigley EM. Prebiotics and probiotics: their role in the management of gastrointestinal disorders in adults. Nutr Clin Pract 2012; 27: 195– 200 [CrossRef] [PubMed]
    [Google Scholar]
  9. Shanahan F, Dinan TG, Ross P, Hill C. Probiotics in transition. Clin Gastroenterol Hepatol 2012; 10: 1220– 1224 [CrossRef] [PubMed]
    [Google Scholar]
  10. Buffie CG, Pamer EG. Microbiota-mediated colonization resistance against intestinal pathogens. Nat Rev Immunol 2013; 13: 790– 801 [CrossRef] [PubMed]
    [Google Scholar]
  11. Gutierrez-Castrellon P, Lopez-Velazquez G, Diaz-Garcia L, Jimenez-Gutierrez C, Mancilla-Ramirez J et al. Diarrhea in preschool children and Lactobacillus reuteri: a randomized controlled trial. Pediatrics 2014; 133: e904-e909 [CrossRef] [PubMed]
    [Google Scholar]
  12. Liévin-Le Moal V, Servin AL. Anti-infective activities of Lactobacillus strains in the human intestinal microbiota: from probiotics to gastrointestinal anti-infectious biotherapeutic agents. Clin Microbiol Rev 2014; 27: 167– 199 [CrossRef] [PubMed]
    [Google Scholar]
  13. Lee YK, Puong KY, Ouwehand AC, Salminen S. Displacement of bacterial pathogens from mucus and Caco-2 cell surface by Lactobacilli. J Med Microbiol 2003; 52: 925– 930 [CrossRef] [PubMed]
    [Google Scholar]
  14. Ingrassia I, Leplingard A, Darfeuille-Michaud A. Lactobacillus casei DN-114 001 inhibits the ability of adherent-invasive Escherichia coli isolated from Crohn's disease patients to adhere to and to invade intestinal epithelial cells. Appl Environ Microbiol 2005; 71: 2880– 2887 [CrossRef] [PubMed]
    [Google Scholar]
  15. Millette M, Cornut G, Dupont C, Shareck F, Archambault D et al. Capacity of human nisin- and pediocin-producing lactic acid bacteria to reduce intestinal colonization by vancomycin-resistant Enterococci. Appl Environ Microbiol 2008; 74: 1997– 2003 [CrossRef] [PubMed]
    [Google Scholar]
  16. Maudsdotter L, Jonsson H, Roos S, Jonsson AB. Lactobacilli reduce cell cytotoxicity caused by Streptococcus pyogenes by producing lactic acid that degrades the toxic component lipoteichoic acid. Antimicrob Agents Chemother 2011; 55: 1622– 1628 [CrossRef] [PubMed]
    [Google Scholar]
  17. O'Shea EF, Cotter PD, Stanton C, Ross RP, Hill C. Production of bioactive substances by intestinal bacteria as a basis for explaining probiotic mechanisms: bacteriocins and conjugated linoleic acid. Int J Food Microbiol 2012; 152: 189– 205 [CrossRef] [PubMed]
    [Google Scholar]
  18. Mukherjee S, Ramesh A. Bacteriocin-producing strains of Lactobacillus plantarum inhibit adhesion of Staphylococcus aureus to extracellular matrix: quantitative insight and implications in antibacterial therapy. J Med Microbiol 2015; 64: 1514– 1526 [CrossRef] [PubMed]
    [Google Scholar]
  19. Lebeer S, Vanderleyden J, de Keersmaecker SC. Host interactions of probiotic bacterial surface molecules: comparison with commensals and pathogens. Nat Rev Microbiol 2010; 8: 171– 184 [CrossRef] [PubMed]
    [Google Scholar]
  20. Reid G, Younes JA, van der Mei HC, Gloor GB, Knight R et al. Microbiota restoration: natural and supplemented recovery of human microbial communities. Nat Rev Microbiol 2011; 9: 27– 38 [CrossRef] [PubMed]
    [Google Scholar]
  21. Rendueles O, Ferrières L, Frétaud M, Bégaud E, Herbomel P et al. A new zebrafish model of oro-intestinal pathogen colonization reveals a key role for adhesion in protection by probiotic bacteria. PLoS Pathog 2012; 8: e1002815 [CrossRef] [PubMed]
    [Google Scholar]
  22. Mukherjee S, Singh AK, Adhikari MD, Ramesh A. Quantitative appraisal of the probiotic attributes and in vitro adhesion potential of anti-listerial bacteriocin-producing lactic acid bacteria. Probiotics Antimicrob Proteins 2013; 5: 99– 109 [CrossRef] [PubMed]
    [Google Scholar]
  23. Dobson A, Cotter PD, Ross RP, Hill C. Bacteriocin production: a probiotic trait?. Appl Environ Microbiol 2012; 78: 1– 6 [CrossRef] [PubMed]
    [Google Scholar]
  24. Cotter PD, Ross RP, Hill C. Bacteriocins - a viable alternative to antibiotics?. Nat Rev Microbiol 2013; 11: 95– 105 [CrossRef] [PubMed]
    [Google Scholar]
  25. Ruszczyński M, Radzikowski A, Szajewska H. Clinical trial: effectiveness of Lactobacillus rhamnosus (strains E/N, Oxy and Pen) in the prevention of antibiotic-associated diarrhoea in children. Aliment Pharmacol Ther 2008; 28: 154– 161 [CrossRef] [PubMed]
    [Google Scholar]
  26. Huynh HQ, Debruyn J, Guan L, Diaz H, Li M et al. Probiotic preparation VSL#3 induces remission in children with mild to moderate acute ulcerative colitis: a pilot study. Inflamm Bowel Dis 2009; 15: 760– 768 [CrossRef] [PubMed]
    [Google Scholar]
  27. Miele E, Pascarella F, Giannetti E, Quaglietta L, Baldassano RN et al. Effect of a probiotic preparation (VSL#3) on induction and maintenance of remission in children with ulcerative colitis. Am J Gastroenterol 2009; 104: 437– 443 [CrossRef] [PubMed]
    [Google Scholar]
  28. Rautava S, Salminen S, Isolauri E. Specific probiotics in reducing the risk of acute infections in infancy–a randomised, double-blind, placebo-controlled study. Br J Nutr 2009; 101: 1722– 1726 [CrossRef] [PubMed]
    [Google Scholar]
  29. Lönnermark E, Friman V, Lappas G, Sandberg T, Berggren A et al. Intake of Lactobacillus plantarum reduces certain gastrointestinal symptoms during treatment with antibiotics. J Clin Gastroenterol 2010; 44: 106– 112 [CrossRef] [PubMed]
    [Google Scholar]
  30. Vesterlund S, Paltta J, Karp M, Ouwehand AC. Measurement of bacterial adhesion-in vitro evaluation of different methods. J Microbiol Methods 2005; 60: 225– 233 [CrossRef] [PubMed]
    [Google Scholar]
  31. Grimm V, Gleinser M, Neu C, Zhurina D, Riedel CU. Expression of fluorescent proteins in Bifidobacteria for analysis of host-microbe interactions. Appl Environ Microbiol 2014; 80: 2842– 2850 [CrossRef] [PubMed]
    [Google Scholar]
  32. Shapiro HM, Perlmutter NG. Killer applications: toward affordable rapid cell-based diagnostics for malaria and tuberculosis. Cytometry B Clin Cytom 2008; 74: S152– S164 [CrossRef] [PubMed]
    [Google Scholar]
  33. Sivaraman D, Yeh HY, Mulchandani A, Yates MV, Chen W. Use of flow cytometry for rapid, quantitative detection of poliovirus-infected cells via TAT peptide-delivered molecular beacons. Appl Environ Microbiol 2013; 79: 696– 700 [CrossRef] [PubMed]
    [Google Scholar]
  34. Killeen SD, Wang JH, Andrews EJ, Redmond HP. Bacterial endotoxin enhances colorectal cancer cell adhesion and invasion through TLR-4 and NF-κB-dependent activation of the urokinase plasminogen activator system. Br J Cancer 2009; 100: 1589– 1602 [CrossRef] [PubMed]
    [Google Scholar]
  35. Hytönen J, Haataja S, Finne J. Use of flow cytometry for the adhesion analysis of Streptococcus pyogenes mutant strains to epithelial cells: investigation of the possible role of surface pullulanase and cysteine protease, and the transcriptional regulator Rgg. BMC Microbiol 2006; 6: 18 [CrossRef] [PubMed]
    [Google Scholar]
  36. Anderson EL, Cole JN, Olson J, Ryba B, Ghosh P et al. The fibrinogen-binding M1 protein reduces pharyngeal cell adherence and colonization phenotypes of M1T1 group A Streptococcus. J Biol Chem 2014; 289: 3539– 3546 [CrossRef] [PubMed]
    [Google Scholar]
  37. Singh AK, Mukherjee S, Adhikari MD, Ramesh A. Fluorescence-based comparative evaluation of bactericidal potency and food application potential of anti-listerial bacteriocin produced by lactic acid bacteria isolated from indigenous samples. Probiotics Antimicrob Proteins 2012; 4: 122– 132 [CrossRef] [PubMed]
    [Google Scholar]
  38. Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986; 327: 307– 310 [PubMed] [Crossref]
    [Google Scholar]
  39. Marchant M, Moreno MA. Dynamics and diversity of Escherichia coli in animals and system management of the manure on a commercial farrow-to-finish pig farm. Appl Environ Microbiol 2013; 79: 853– 859 [CrossRef] [PubMed]
    [Google Scholar]
  40. Fernandes J, Su W, Rahat-Rozenbloom S, Wolever TM, Comelli EM. Adiposity, gut microbiota and faecal short chain fatty acids are linked in adult humans. Nutr Diabetes 2014; 4: e121 [CrossRef] [PubMed]
    [Google Scholar]
  41. Steck N, Hoffmann M, Sava IG, Kim SC, Hahne H et al. Enterococcus faecalis metalloprotease compromises epithelial barrier and contributes to intestinal inflammation. Gastroenterology 2011; 141: 959– 971 [CrossRef] [PubMed]
    [Google Scholar]
  42. Shogan BD, Belogortseva N, Luong PM, Zaborin A, Lax S et al. Collagen degradation and MMP9 activation by Enterococcus faecalis contribute to intestinal anastomotic leak. Sci Transl Med 2015; 7: 286ra68 [CrossRef] [PubMed]
    [Google Scholar]
  43. Kernbauer E, Maurer K, Torres VJ, Shopsin B, Cadwell K. Gastrointestinal dissemination and transmission of Staphylococcus aureus following bacteremia. Infect Immun 2015; 83: 372– 378 [CrossRef] [PubMed]
    [Google Scholar]
  44. Senn L, Clerc O, Zanetti G, Basset P, Prod'hom G et al. The stealthy superbug: the role of asymptomatic enteric carriage in maintaining a long-term hospital outbreak of ST228 methicillin-resistant Staphylococcus aureus. MBio 2016; 7: e02039-15 [CrossRef] [PubMed]
    [Google Scholar]
  45. Brandl K, Plitas G, Mihu CN, Ubeda C, Jia T et al. Vancomycin-resistant enterococci exploit antibiotic-induced innate immune deficits. Nature 2008; 455: 804– 807 [CrossRef] [PubMed]
    [Google Scholar]
  46. Maharshak N, Huh EY, Paiboonrungruang C, Shanahan M, Thurlow L et al. Enterococcus faecalis gelatinase mediates intestinal permeability via protease-activated receptor 2. Infect Immun 2015; 83: 2762– 2770 [CrossRef] [PubMed]
    [Google Scholar]
  47. Lin Z, Kotler DP, Schlievert PM, Sordillo EM. Staphylococcal enterocolitis: forgotten but not gone?. Dig Dis Sci 2010; 55: 1200– 1207 [CrossRef] [PubMed]
    [Google Scholar]
  48. Boyce JM, Havill NL. Nosocomial antibiotic-associated diarrhea associated with enterotoxin-producing strains of methicillin-resistant Staphylococcus aureus. Am J Gastroenterol 2005; 100: 1828– 1834 [CrossRef] [PubMed]
    [Google Scholar]
  49. Ribet D, Cossart P. How bacterial pathogens colonize their hosts and invade deeper tissues. Microbes Infect 2015; 17: 173– 183 [CrossRef] [PubMed]
    [Google Scholar]
  50. Lebeer S, Claes I, Tytgat HL, Verhoeven TL, Marien E et al. Functional analysis of Lactobacillus rhamnosus GG pili in relation to adhesion and immunomodulatory interactions with intestinal epithelial cells. Appl Environ Microbiol 2012; 78: 185– 193 [CrossRef] [PubMed]
    [Google Scholar]
  51. von Ossowski I, Reunanen J, Satokari R, Vesterlund S, Kankainen M et al. Mucosal adhesion properties of the probiotic Lactobacillus rhamnosus GG SpaCBA and SpaFED pilin subunits. Appl Environ Microbiol 2010; 76: 2049– 2057 [CrossRef] [PubMed]
    [Google Scholar]
  52. Tallon R, Arias S, Bressollier P, Urdaci MC. Strain- and matrix-dependent adhesion of Lactobacillus plantarum is mediated by proteinaceous bacterial compounds. J Appl Microbiol 2007; 102: 442– 451 [CrossRef] [PubMed]
    [Google Scholar]
  53. García-Cayuela T, Korany AM, Bustos I, P. Gómez de Cadiñanos L, Requena T et al. Adhesion abilities of dairy Lactobacillus plantarum strains showing an aggregation phenotype. Food Res Int 2014; 57: 44– 50 [CrossRef]
    [Google Scholar]
  54. Giavarina D. Understanding Bland Altman analysis. Biochem Med 2015; 25: 141– 151 [CrossRef] [PubMed]
    [Google Scholar]
  55. Ringnér M. What is principal component analysis?. Nat Biotechnol 2008; 26: 303– 304 [CrossRef] [PubMed]
    [Google Scholar]
  56. Hartlova A, Cerveny L, Hubalek M, Krocova Z, Stulik J. Membrane rafts: a potential gateway for bacterial entry into host cells. Microbiol Immunol 2010; 54: 237– 245 [CrossRef] [PubMed]
    [Google Scholar]
  57. Cho JA, Chinnapen DJ, Aamar E, Te Welscher YM, Lencer WI et al. Insights on the trafficking and retro-translocation of glycosphingolipid-binding bacterial toxins. Front Cell Infect Microbiol 2012; 2: 51 [CrossRef] [PubMed]
    [Google Scholar]
  58. Svensson M, Platt FM, Svanborg C. Glycolipid receptor depletion as an approach to specific antimicrobial therapy. FEMS Microbiol Lett 2006; 258: 1– 8 [CrossRef] [PubMed]
    [Google Scholar]
  59. Bäumler AJ, Sperandio V. Interactions between the microbiota and pathogenic bacteria in the gut. Nature 2016; 535: 85– 93 [CrossRef] [PubMed]
    [Google Scholar]
  60. Blaser M. Antibiotic overuse: Stop the killing of beneficial bacteria. Nature 2011; 476: 393– 394 [CrossRef] [PubMed]
    [Google Scholar]
  61. Langdon A, Crook N, Dantas G. The effects of antibiotics on the microbiome throughout development and alternative approaches for therapeutic modulation. Genome Med 2016; 8: 39 [CrossRef] [PubMed]
    [Google Scholar]
  62. Drider D, Fimland G, Héchard Y, Mcmullen LM, Prévost H. The continuing story of class IIa bacteriocins. Microbiol Mol Biol Rev 2006; 70: 564– 582 [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000561
Loading
/content/journal/micro/10.1099/mic.0.000561
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error