1887

Abstract

OxyR proteins are LysR-type transcriptional regulators, which play an important role in responding to oxidative stress in bacteria. Sp7 harbours two copies of OxyR. The inactivation of the , the gene organized divergently to in Sp7, led to an increased tolerance to alkyl hydroperoxides, which was corroborated by an increase in alkyl hydroperoxide reductase (AhpC) activity, enhanced expression of : fusion and increased synthesis of AhpC protein in the :: mutant. The upstream region of promoter harboured a putative OxyR binding site, T-N11-A. Mutation of T, A or both in the T-N11-Amotif caused derepression of in suggesting that T-N11-A might be the binding site for a negative regulator. Retardation of the electrophoretic mobility of the T-N11-A motif harbouring intergenic DNA by recombinant OxyR1, under reducing as well as oxidizing conditions, indicated that OxyR1 acts as a negative regulator of in . Sequence of the promoter of predicted on the basis of transcriptional start site, and an enhanced expression of fusion in :: mutant background suggested that promoter was RpoE2 dependent. Thus, this study shows that in Sp7, expression is regulated negatively by OxyR1 but is regulated positively by RpoE2, an oxidative-stress-responsive sigma factor. It also shows that OxyR1 regulates the expression RpoE1, which is known to play an important role during photooxidative stress in .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000363
2016-10-01
2020-04-08
Loading full text...

Full text loading...

/deliver/fulltext/micro/162/10/1870.html?itemId=/content/journal/micro/10.1099/mic.0.000363&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J.. 1990; Basic local alignment search tool. J Mol Biol215:403–410 [CrossRef][PubMed]
    [Google Scholar]
  2. Antelmann H., Engelmann S., Schmid R., Hecker M.. 1996; General and oxidative stress responses in Bacillus subtilis: cloning, expression, and mutation of the alkyl hydroperoxide reductase operon. J Bacteriol178:6571–6578[PubMed]
    [Google Scholar]
  3. Aslund F., Beckwith J.. 1999; Bridge over troubled waters: sensing stress by disulfide bond formation. Cell96:751–753[PubMed][CrossRef]
    [Google Scholar]
  4. Bashan Y., Holguin G., de-Bashan L. E.. 2004; Azospirillum-plant relationships: physiological, molecular, agricultural, and environmental advances (1997–2003). Can J Microbiol50:521–577 [CrossRef][PubMed]
    [Google Scholar]
  5. Bsat N., Chen L., Helmann J. D.. 1996; Mutation of the Bacillus subtilis alkyl hydroperoxide reductase (ahpCF) operon reveals compensatory interactions among hydrogen peroxide stress genes. J Bacteriol178:6579–6586[PubMed]
    [Google Scholar]
  6. Byerly K. A., Urbanowski M. L., Stauffer G. V.. 1991; The metR binding site in the Salmonella typhimurium metH gene: DNA sequence constraints on activation. J Bacteriol173:3547–3553[PubMed]
    [Google Scholar]
  7. Cabiscol E., Tamarit J., Ros J.. 2000; Oxidative stress in bacteria and protein damage by reactive oxygen species. Int Microbiol3:3–8[PubMed]
    [Google Scholar]
  8. Chae H. Z., Robison K., Poole L. B., Church G., Storz G., Rhee S. G.. 1994; Cloning and sequencing of thiol-specific antioxidant from mammalian brain: alkyl hydroperoxide reductase and thiol-specific antioxidant define a large family of antioxidant enzymes. Proc Natl Acad Sci U S A91:7017–7021 [CrossRef][PubMed]
    [Google Scholar]
  9. Christman M. F., Morgan R. W., Jacobson F. S., Ames B. N.. 1985; Positive control of a regulon for defenses against oxidative stress and some heat-shock proteins in Salmonella typhimurium. Cell41:753–762 [CrossRef][PubMed]
    [Google Scholar]
  10. Demple B.. 1991; Regulation of bacterial oxidative stress genes. Annu Rev Genet25:315–337 [CrossRef][PubMed]
    [Google Scholar]
  11. Dhandayuthapani S., Zhang Y., Mudd M. H., Deretic V.. 1996; Oxidative stress response and its role in sensitivity to isoniazid in mycobacteria: characterization and inducibility of ahpC by peroxides in Mycobacterium smegmatis and lack of expression in M. aurum and M. tuberculosis. J Bacteriol178:3641–3649[PubMed]
    [Google Scholar]
  12. Dubbs J. M., Mongkolsuk S.. 2012; Peroxide-sensing transcriptional regulators in bacteria. J Bacteriol194:5495–5503 [CrossRef][PubMed]
    [Google Scholar]
  13. Fisher R. F., Long S. R.. 1993; Interactions of NodD at the nod Box: NodD binds to two distinct sites on the same face of the helix and induces a bend in the DNA. J Mol Biol233:336–348 [CrossRef][PubMed]
    [Google Scholar]
  14. Gupta N., Kumar S., Mishra M. N., Tripathi A. K.. 2013; A constitutively expressed pair of rpoE2-chrR2 in Azospirillum brasilense Sp7 is required for survival under antibiotic and oxidative stress. Microbiology159:205–218 [CrossRef]
    [Google Scholar]
  15. Gupta N., Gupta A., Kumar S., Mishra R., Singh C., Tripathi A. K.. 2014; Cross-talk between cognate and noncognate RpoE sigma factors and Zn(2+)-binding anti-sigma factors regulates photooxidative stress response in Azospirillum brasilense. Antioxid Redox Signal20:42–459 [CrossRef][PubMed]
    [Google Scholar]
  16. Howlett N. G., Avery S. V.. 1997; Induction of lipid peroxidation during heavy metal stress in Saccharomyces cerevisiae and influence of plasma membrane fatty acid unsaturation. Appl Environ Microbiol63:2971–2976[PubMed]
    [Google Scholar]
  17. Iyer K. S., Klee W. A.. 1973; Direct spectrophotometric measurement of the rate of reduction of disulfide bonds. The reactivity of the disulfide bonds of bovine -lactalbumin. J Biol Chem248:707–710[PubMed]
    [Google Scholar]
  18. Jacobson F. S., Morgan R. W., Christman M. F., Ames B. N.. 1989; An alkyl hydroperoxide reductase from Salmonella typhimurium involved in the defense of DNA against oxidative damage. Purification and properties. J Biol Chem264:1488–1496[PubMed]
    [Google Scholar]
  19. Kim Y. C., Miller C. D., Anderson A. J.. 1999; Transcriptional regulation by iron and role during plant pathogenesis of genes encoding iron- and manganese-superoxide dismutase of Pseudomonas syringae pv. syringae B728a. Physiol Mol Plant Pathol55:327–339 [CrossRef]
    [Google Scholar]
  20. Kim S., Bang Y. J., Kim D., Lim J. G., Oh M. H., Choi S. H.. 2014; Distinct characteristics of OxyR2, a new OxyR-type regulator, ensuring expression of peroxiredoxin 2 detoxifying low levels of hydrogen peroxide in Vibrio vulnificus. Mol Microbiol93:992–1009 [CrossRef][PubMed]
    [Google Scholar]
  21. Kumar S., Rai A. K., Mishra M. N., Shukla M., Singh P. K., Tripathi A. K.. 2012; RpoH2 sigma factor controls the photooxidative stress response in a non-photosynthetic rhizobacterium, Azospirillum brasilense Sp7. Microbiology158:2891–2902 [CrossRef][PubMed]
    [Google Scholar]
  22. LeBlanc J. J., Brassinga A. K., Ewann F., Davidson R. J., Hoffman P. S.. 2008; An ortholog of OxyR in Legionella pneumophila is expressed postexponentially and negatively regulates the alkyl hydroperoxide reductase (ahpC2D) operon. J Bacteriol190:3444–3455 [CrossRef][PubMed]
    [Google Scholar]
  23. Loprasert S., Fuangthong M., Whangsuk W., Atichartpongkul S., Mongkolsuk S.. 2000; Molecular and physiological analysis of an OxyR-regulated ahpC promoter in Xanthomonas campestris pv. phaseoli. Mol Microbiol37:1504–1514 [CrossRef][PubMed]
    [Google Scholar]
  24. Maxon M. E., Wigboldus J., Brot N., Weissbach H.. 1990; Structure-function studies on Escherichia coli MetR protein, a putative prokaryotic leucine zipper protein. Proc Natl Acad Sci U S A87:7076–7079 [CrossRef][PubMed]
    [Google Scholar]
  25. Miller J. H.. 1972; Experiments in Molecular Genetics: A Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press;
    [Google Scholar]
  26. Mishra M. N., Thirunavukkarasu N., Sharma I. M., Jagnnadham M. V., Tripathi A. K.. 2008; Mutation in a gene encoding anti-sigma factor in A. brasilense confers tolerance to elevated temperature, antibacterial peptide and PEG-200 via carotenoid synthesis. FEMS Microbiol Lett287:221–229 [CrossRef][PubMed]
    [Google Scholar]
  27. Mishra M. N., Kumar S., Gupta N., Kaur S., Gupta A., Tripathi A. K.. 2011; An extracytoplasmic function sigma factor cotranscribed with its cognate anti-sigma factor confers tolerance to NaCl, ethanol and methylene blue in Azospirillum brasilense Sp7. Microbiology157:988–999 [CrossRef][PubMed]
    [Google Scholar]
  28. Mongkolsuk S., Loprasert S., Whangsuk W., Fuangthong M., Atichartpongkun S.. 1997; Characterization of transcription organization and analysis of unique expression patterns of an alkyl hydroperoxide reductase C gene (ahpC) and the peroxide regulator operon ahpF-oxyR-orfX from Xanthomonas campestris pv. phaseoli. J Bacteriol179:3950–3955[PubMed]
    [Google Scholar]
  29. Nam T. W., Ziegelhoffer E. C., Lemke R. A., Donohue T. J.. 2013; Proteins needed to activate a transcriptional response to the reactive oxygen species singlet oxygen. MBio4:e00541-12 [CrossRef][PubMed]
    [Google Scholar]
  30. Nur I., Yuval L. S., Okon Y., Henis Y.. 1981; Carotenoid composition & function in nitrogen fixing bacteria of the genus Azospirillum. J Gen Microbiol122:27–32
    [Google Scholar]
  31. Nur I., Okon Y., Henis Y.. 1982; Effect of dissolved oxygen tension on production of carotenoids, poly-β-hydroxybutyrate, succinate oxidase and superoxide dismutase by Azospirillum brasilense Cd grown in continuous culture. J Gen Microbiol128:2937–2943 [CrossRef]
    [Google Scholar]
  32. Pagán-Ramos E., Song J., McFalone M., Mudd M. H., Deretic V.. 1998; Oxidative stress response and characterization of the oxyR-ahpC and furA-katG loci in Mycobacterium marinum. J Bacteriol180:4856–4864[PubMed]
    [Google Scholar]
  33. Paget M. S.. 2015; Bacterial sigma factors and anti-sigma factors: structure, function and distribution. Biomolecules5:1245–1265 [CrossRef][PubMed]
    [Google Scholar]
  34. Parsek M. R., Ye R. W., Pun P., Chakrabarty A. M.. 1994; Critical nucleotides in the interaction of a LysR-type regulator with its target promoter region. catBC promoter activation by CatR. J Biol Chem269:11279–11284[PubMed]
    [Google Scholar]
  35. Poole L. B.. 1996; Flavin-dependent alkyl hydroperoxide reductase from Salmonella typhimurium. 2. Cystine disulfides involved in catalysis of peroxide reduction. Biochemistry35:65–75 [CrossRef][PubMed]
    [Google Scholar]
  36. Poole L. B., Ellis H. R.. 1996; Flavin-dependent alkyl hydroperoxide reductase from Salmonella typhimurium. 1. Purification and enzymatic activities of overexpressed AhpF and AhpC proteins. Biochemistry35:56–64 [CrossRef][PubMed]
    [Google Scholar]
  37. Rocha E. R., Smith C. J.. 1999; Role of the alkyl hydroperoxide reductase (ahpCF) gene in oxidative stress defense of the obligate anaerobe Bacteroides fragilis. J Bacteriol181:5701–5710[PubMed]
    [Google Scholar]
  38. Schell M. A.. 1993; Molecular biology of the LysR family of transcriptional regulators. Annu Rev Microbiol47:597–626 [CrossRef][PubMed]
    [Google Scholar]
  39. Schell M. A., Poser E. F.. 1989; Demonstration, characterization, and mutational analysis of NahR protein binding to nah and sal promoters. J Bacteriol171:837–846[PubMed]
    [Google Scholar]
  40. Schell M. A., Brown P. H., Raju S.. 1990; Use of saturation mutagenesis to localize probable functional domains in the NahR protein, a LysR-type transcription activator. J Biol Chem265:3844–3850[PubMed]
    [Google Scholar]
  41. Simon R., Priefer U., Puehler A.. 1983; A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram negative bacteria. Biotechnology1:784–791 [CrossRef]
    [Google Scholar]
  42. Singh S., Singh C., Tripathi A. K.. 2014; A SAM-dependent methyltransferase cotranscribed with arsenate reductase alters resistance to peptidyl transferase center-binding antibiotics in Azospirillum brasilense Sp7. Appl Microbiol Biotechnol98:4625–4636 [CrossRef][PubMed]
    [Google Scholar]
  43. Storz G., Jacobson F. S., Tartaglia L. A., Morgan R. W., Silveira L. A., Ames B. N.. 1989; An alkyl hydroperoxide reductase induced by oxidative stress in Salmonella typhimurium and Escherichia coli: genetic characterization and cloning of ahp. J Bacteriol171:2049–2055[PubMed]
    [Google Scholar]
  44. Stothard P.. 2000; The sequence manipulation suite: JavaScript programs for analyzing and formatting protein and DNA sequences. Biotechniques28:1102–1104[PubMed]
    [Google Scholar]
  45. Tartaglia L. A., Storz G., Ames B. N.. 1989; Identification and molecular analysis of oxyR-regulated promoters important for the bacterial adaptation to oxidative stress. J Mol Biol210:709–719 [CrossRef][PubMed]
    [Google Scholar]
  46. Tatsuzawa H., Maruyama T., Misawa N., Fujimori K., Nakano M.. 2000; Quenching of singlet oxygen by carotenoids produced in Escherichia coli - attenuation of singlet oxygen-mediated bacterial killing by carotenoids. FEBS Lett484:280–284 [CrossRef][PubMed]
    [Google Scholar]
  47. Teramoto H., Inui M., Yukawa H.. 2013; OxyR acts as a transcriptional repressor of hydrogen peroxide-inducible antioxidant genes in Corynebacterium glutamicum R. FEBS J280:3298–3312 [CrossRef][PubMed]
    [Google Scholar]
  48. Thirunavukkarasu N., Mishra M. N., Spaepen S., Vanderleyden J., Gross C. A., Tripathi A. K.. 2008; An extra-cytoplasmic function sigma factor and anti-sigma factor control carotenoid biosynthesis in Azospirillum brasilense. Microbiology154:2096–2105 [CrossRef][PubMed]
    [Google Scholar]
  49. Toledano M. B., Kullik I., Trinh F., Baird P. T., Schneider T. D., Storz G.. 1994; Redox-dependent shift of OxyR-DNA contacts along an extended DNA-binding site: a mechanism for differential promoter selection. Cell78:897–909 [CrossRef][PubMed]
    [Google Scholar]
  50. Vanstockem M., Michiels K., Vanderleyden J., Van Gool A. P.. 1987; Transposon mutagenesis of Azospirillum brasilense and Azospirillum lipoferum: physical analysis of Tn5 and Tn5-Mob insertion mutants. Appl Environ Microbiol53:410–415[PubMed]
    [Google Scholar]
  51. Ward J. F.. 1975; Molecular mechanisms of radiation induced damage to nucleic acids. Adv Radiat Biol5:181–239[CrossRef]
    [Google Scholar]
  52. Wasim M., Bible A. N., Xie Z., Alexandre G.. 2009; Alkyl hydroperoxide reductase has a role in oxidative stress resistance and in modulating changes in cell-surface properties in Azospirillum brasilense Sp245. Microbiology155:1192–1202 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000363
Loading
/content/journal/micro/10.1099/mic.0.000363
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error