1887

Abstract

Current antibiotic treatments are insufficient in eradicating bacterial biofilms, which represent the primary cause of chronic bacterial infections. Thus, there is an urgent need for new strategies to eradicate biofilm infections. The second messenger c-di-GMP is a positive regulator of biofilm formation in many clinically relevant bacteria. It is hypothesized that drugs lowering the intracellular level of c-di-GMP will force biofilm bacteria into a more treatable planktonic lifestyle. To identify compounds capable of lowering c-di-GMP levels in , we screened 5000 compounds for their potential c-di-GMP-lowering effect using a recently developed c-di-GMP biosensor strain. Our screen identified the anti-cancerous drug doxorubicin as a potent c-di-GMP inhibitor. In addition, the drug decreased the transcription of many biofilm-related genes. However, despite its effect on the c-di-GMP content in , doxorubicin was unable to inhibit biofilm formation or disperse established biofilms. On the contrary, the drug was found to promote biofilm formation, possibly through release of extracellular DNA from a subpopulation of killed bacteria. Our findings emphasize that lowering of the c-di-GMP content in bacteria might not be sufficient to mediate biofilm inhibition or dispersal.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000354
2016-10-01
2020-01-17
Loading full text...

Full text loading...

/deliver/fulltext/micro/162/10/1797.html?itemId=/content/journal/micro/10.1099/mic.0.000354&mimeType=html&fmt=ahah

References

  1. Abraham W. R.. 2016; Going beyond the control of quorum-sensing to combat biofilm infections. Antibiotics5:3 [CrossRef]
    [Google Scholar]
  2. Alhede M., Kragh K. N., Qvortrup K., Allesen-Holm M., van Gennip M., Christensen L. D., Jensen P. Ø., Nielsen A. K., Parsek M. et al. 2011; Phenotypes of non-attached Pseudomonas aeruginosa aggregates resemble surface attached biofilm. PLoS One6:e27943 [CrossRef][PubMed]
    [Google Scholar]
  3. Allesen-Holm M., Barken K. B., Yang L., Klausen M., Webb J. S., Kjelleberg S., Molin S., Givskov M., Tolker-Nielsen T.. 2006; A characterization of DNA release in Pseudomonas aeruginosa cultures and biofilms. Mol Microbiol59:1114–1128 [CrossRef][PubMed]
    [Google Scholar]
  4. Anders S., Huber W.. 2010; Differential expression analysis for sequence count data. Genome Biol11:R106 [CrossRef][PubMed]
    [Google Scholar]
  5. Arcamone F., Cassinelli G., Fantini G., Grein A., Orezzi P., Pol C., Spalla C.. 2000; Adriamycin, 14-hydroxydaunomycin, a new antitumor antibiotic from S. peucetius var. caesius. reprinted from biotechnology and bioengineering, Vol. XI, Issue 6, Pages 1101–1110 (1969). Biotechnol Bioeng67:704–713[PubMed][CrossRef]
    [Google Scholar]
  6. Barken K. B., Pamp S. J., Yang L., Gjermansen M., Bertrand J. J., Klausen M., Givskov M., Whitchurch C. B., Engel J. N. et al. 2008; Roles of type IV pili, flagellum-mediated motility and extracellular DNA in the formation of mature multicellular structures in Pseudomonas aeruginosa biofilms. Environ Microbiol10:2331–2343 [CrossRef][PubMed]
    [Google Scholar]
  7. Barnes R. J., Bandi R. R., Wong W. S., Barraud N., McDougald D., Fane A., Kjelleberg S., Rice S. A.. 2013; Optimal dosing regimen of nitric oxide donor compounds for the reduction of Pseudomonas aeruginosa biofilm and isolates from wastewater membranes. Biofouling29:203–212 [CrossRef][PubMed]
    [Google Scholar]
  8. Barraud N., Schleheck D., Klebensberger J., Webb J. S., Hassett D. J., Rice S. A., Kjelleberg S.. 2009; Nitric oxide signaling in Pseudomonas aeruginosa biofilms mediates phosphodiesterase activity, decreased cyclic di-GMP levels, and enhanced dispersal. J Bacteriol191:7333–7342 [CrossRef][PubMed]
    [Google Scholar]
  9. Basu Roy A., Sauer K.. 2014; Diguanylate cyclase NicD-based signalling mechanism of nutrient-induced dispersion by Pseudomonas aeruginosa. Mol Microbiol94:771–793 [CrossRef][PubMed]
    [Google Scholar]
  10. Belenky P., Ye J. D., Porter C. B., Cohen N. R., Lobritz M. A., Ferrante T., Jain S., Korry B. J., Schwarz E. G. et al. 2015; Bactericidal antibiotics induce toxic metabolic perturbations that lead to cellular damage. Cell Rep13:968–980 [CrossRef][PubMed]
    [Google Scholar]
  11. Blackledge M. S., Worthington R. J., Melander C.. 2013; Biologically inspired strategies for combating bacterial biofilms. Curr Opin Pharmacol13:699–706 [CrossRef][PubMed]
    [Google Scholar]
  12. Borlee B. R., Goldman A. D., Murakami K., Samudrala R., Wozniak D. J., Parsek M. R.. 2010; Pseudomonas aeruginosa uses a cyclic-di-GMP-regulated adhesin to reinforce the biofilm extracellular matrix. Mol Microbiol75:827–842 [CrossRef][PubMed]
    [Google Scholar]
  13. Burhenne H., Kaever V.. 2013; Quantification of cyclic dinucleotides by reversed-phase LC-MS/MS. Methods Mol Biol1016:27–37 [CrossRef][PubMed]
    [Google Scholar]
  14. Chiang W. C., Pamp S. J., Nilsson M., Givskov M., Tolker-Nielsen T.. 2012; The metabolically active subpopulation in Pseudomonas aeruginosa biofilms survives exposure to membrane-targeting antimicrobials via distinct molecular mechanisms. FEMS Immunol Med Microbiol65:245–256 [CrossRef][PubMed]
    [Google Scholar]
  15. Chiang W. C., Nilsson M., Jensen PØ., Høiby N., Nielsen T. E., Givskov M., Tolker-Nielsen T.. 2013; Extracellular DNA shields against aminoglycosides in Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother57:2352–2361 [CrossRef][PubMed]
    [Google Scholar]
  16. Christensen L. D., van Gennip M., Jakobsen T. H., Alhede M., Hougen H. P., Høiby N., Bjarnsholt T., Givskov M.. 2012; Synergistic antibacterial efficacy of early combination treatment with tobramycin and quorum-sensing inhibitors against Pseudomonas aeruginosa in an intraperitoneal foreign-body infection mouse model. J Antimicrob Chemother67:1198–1206 [CrossRef][PubMed]
    [Google Scholar]
  17. Chua S. L., Liu Y., Yam J. K., Chen Y., Munk Vejborg R., Tan B. G., Kjelleberg S., Tolker-Nielsen T., Givskov M. et al. 2014; Dispersed cells represent a distinct stage in the transition from bacterial biofilm to planktonic lifestyles. Nat Commun5:4462 [CrossRef][PubMed]
    [Google Scholar]
  18. Ciofu O., Tolker-Nielsen T., Jensen P. O., Wang H., Hoiby N.. 2015; Antimicrobial resistance, respiratory tract infections and role of biofilms in lung infections in cystic fibrosis patients. Adv Drug Deliv Rev85:7–23 [CrossRef][PubMed]
    [Google Scholar]
  19. Cirz R. T., O'Neill B. M., Hammond J. A., Head S. R., Romesberg F. E.. 2006; Defining the Pseudomonas aeruginosa SOS response and its role in the global response to the antibiotic ciprofloxacin. J Bacteriol188:7101–7110 [CrossRef][PubMed]
    [Google Scholar]
  20. Clark D. J., Maaloe O.. 1967; DNA replication and the division cycle in Escherichia coli. J Mol Biol23:99–112 [CrossRef]
    [Google Scholar]
  21. Cooley R. B., Smith T. J., Leung W., Tierney V., Borlee B. R., O'Toole G. A., Sondermann H.. 2015; Cyclic di-GMP-regulated periplasmic proteolysis of a p seudomonas aeruginosa type Vb secretion system substrate. J Bacteriol198:66–76 [CrossRef]
    [Google Scholar]
  22. Costerton J. W., Lewandowski Z., Caldwell D. E., Korber D. R., Lappin-Scott H. M.. 1995; Microbial biofilms. Annu Rev Microbiol49:711–745 [CrossRef][PubMed]
    [Google Scholar]
  23. Costerton J. W., Stewart P. S., Greenberg E. P.. 1999; Bacterial biofilms: a common cause of persistent infections. Science284:1318–1322 [CrossRef][PubMed]
    [Google Scholar]
  24. Das T., Manefield M.. 2012; Pyocyanin promotes extracellular DNA release in Pseudomonas aeruginosa. PLoS One7:e46718 [CrossRef][PubMed]
    [Google Scholar]
  25. de Bentzmann S., Giraud C., Bernard C. S., Calderon V., Ewald F., Plésiat P., Nguyen C., Grunwald D., Attree I. et al. 2012; Unique biofilm signature, drug susceptibility and decreased virulence in drosophila through the Pseudomonas aeruginosa two-component system PprAB. PLoS Pathog8:e1003052 [CrossRef][PubMed]
    [Google Scholar]
  26. De N., Pirruccello M., Krasteva P. V., Bae N., Raghavan R. V., Sondermann H.. 2008; Phosphorylation-independent regulation of the diguanylate cyclase WspR. PLoS Biol6:e67 [CrossRef][PubMed]
    [Google Scholar]
  27. Diggle S. P., Stacey R. E., Dodd C., Cámara M., Williams P., Winzer K.. 2006; The galactophilic lectin, LecA, contributes to biofilm development in Pseudomonas aeruginosa. Environ Microbiol8:1095–1104 [CrossRef][PubMed]
    [Google Scholar]
  28. Dosler S., Karaaslan E.. 2014; Inhibition and destruction of Pseudomonas aeruginosa biofilms by antibiotics and antimicrobial peptides. Peptides62:32–37 [CrossRef][PubMed]
    [Google Scholar]
  29. Flemming H. C.. 2002; Biofouling in water systems–cases, causes and countermeasures. Appl Microbiol Biotechnol59:629–640 [CrossRef][PubMed]
    [Google Scholar]
  30. Flores-Mireles A. L., Walker J. N., Caparon M., Hultgren S. J.. 2015; Urinary tract infections: epidemiology, mechanisms of infection and treatment options. Nat Rev Microbiol13:269–284 [CrossRef][PubMed]
    [Google Scholar]
  31. Gallagher L. A., McKnight S. L., Kuznetsova M. S., Pesci E. C., Manoil C.. 2002; Functions required for extracellular quinolone signaling by Pseudomonas aeruginosa. J Bacteriol184:6472–6480 [CrossRef][PubMed]
    [Google Scholar]
  32. Giraud C., Bernard C. S., Calderon V., Yang L., Filloux A., Molin S., Fichant G., Bordi C., de Bentzmann S.. 2011; The PprA-PprB two-component system activates CupE, the first non-archetypal Pseudomonas aeruginosa chaperone-usher pathway system assembling fimbriae. Environ Microbiol13:666–683 [CrossRef][PubMed]
    [Google Scholar]
  33. Gjermansen M., Ragas P., Tolker-Nielsen T.. 2006; Proteins with GGDEF and EAL domains regulate Pseudomonas putida biofilm formation and dispersal. FEMS Microbiol Lett265:215–224 [CrossRef][PubMed]
    [Google Scholar]
  34. Ha D. G., O'Toole G. A.. 2015; c-di-GMP and its effects on biofilm formation and dispersion: a Pseudomonas aeruginosa review. Microbiology Spectrum3:Mb-0003–2014[CrossRef]
    [Google Scholar]
  35. Hengge R.. 2009; Principles of c-di-GMP signalling in bacteria. Nat Rev Microbiol7:263–273 [CrossRef][PubMed]
    [Google Scholar]
  36. Hengge R., Gründling A., Jenal U., Ryan R., Yildiz F.. 2016; Bacterial signal transduction by cyclic di-GMP and other nucleotide second messengers. J Bacteriol198:15–26 [CrossRef][PubMed]
    [Google Scholar]
  37. Hickman J. W., Tifrea D. F., Harwood C. S.. 2005; A chemosensory system that regulates biofilm formation through modulation of cyclic diguanylate levels. Proc Natl Acad Sci U S A102:14422–14427 [CrossRef][PubMed]
    [Google Scholar]
  38. Hill D., Rose B., Pajkos A., Robinson M., Bye P., Bell S., Elkins M., Thompson B., Macleod C. et al. 2005; Antibiotic susceptabilities of Pseudomonas aeruginosa isolates derived from patients with cystic fibrosis under aerobic, anaerobic, and biofilm conditions. J Clin Microbiol43:5085–5090 [CrossRef][PubMed]
    [Google Scholar]
  39. Klausen M., Heydorn A., Ragas P., Lambertsen L., Aaes-Jorgensen A., Molin S., Tolker-Nielsen T.. 2003; Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type IV pili mutants. Mol Microbiol48:1511–1524 [CrossRef][PubMed]
    [Google Scholar]
  40. Klebensberger J., Birkenmaier A., Geffers R., Kjelleberg S., Philipp B.. 2009; SiaA and SiaD are essential for inducing autoaggregation as a specific response to detergent stress in Pseudomonas aeruginosa. Environ Microbiol11:3073–3086 [CrossRef][PubMed]
    [Google Scholar]
  41. Kostakioti M., Hadjifrangiskou M., Hultgren S. J.. 2013; Bacterial biofilms: development, dispersal, and therapeutic strategies in the dawn of the postantibiotic era. Cold Spring Harb Perspect Med3:a010306 [CrossRef][PubMed]
    [Google Scholar]
  42. Li Y., Heine S., Entian M., Sauer K., Frankenberg-Dinkel N.. 2013; NO-induced biofilm dispersion in Pseudomonas aeruginosa is mediated by an MHYT domain-coupled phosphodiesterase. J Bacteriol195:3531–3542 [CrossRef][PubMed]
    [Google Scholar]
  43. Ma L., Conover M., Lu H., Parsek M. R., Bayles K., Wozniak D. J.. 2009; Assembly and development of the Pseudomonas aeruginosa biofilm matrix. PLoS Pathog5:e1000354 [CrossRef]
    [Google Scholar]
  44. Malone J. G., Jaeger T., Spangler C., Ritz D., Spang A., Arrieumerlou C., Kaever V., Landmann R., Jenal U.. 2010; YfiBNR mediates cyclic di-GMP dependent small colony variant formation and persistence in Pseudomonas aeruginosa. PLoS Pathog6:e1000804 [CrossRef][PubMed]
    [Google Scholar]
  45. Mayer-Hamblett N., Ramsey B. W., Kulasekara H. D., Wolter D. J., Houston L. S., Pope C. E., Kulasekara B. R., Armbruster C. R., Burns J. L. et al. 2014; Pseudomonas aeruginosa phenotypes associated with eradication failure in children with cystic fibrosis. Clin Infect Dis59:624–631 [CrossRef]
    [Google Scholar]
  46. Mishra M., Byrd M. S., Sergeant S., Azad A. K., Parsek M. R., McPhail L., Schlesinger L. S., Wozniak D. J.. 2012; Pseudomonas aeruginosa Psl polysaccharide reduces neutrophil phagocytosis and the oxidative response by limiting complement-mediated opsonization. Cell Microbiol14:95–106 [CrossRef][PubMed]
    [Google Scholar]
  47. Moscoso J. A., Jaeger T., Valentini M., Hui K., Jenal U., Filloux A.. 2014; The diguanylate cyclase SadC is a central player in Gac/Rsm-mediated biofilm formation in Pseudomonas aeruginosa. J Bacteriol196:4081–4088 [CrossRef][PubMed]
    [Google Scholar]
  48. Pamp S. J., Tolker-Nielsen T.. 2007; Multiple roles of biosurfactants in structural biofilm development by Pseudomonas aeruginosa. J Bacteriol189:2531–2539 [CrossRef][PubMed]
    [Google Scholar]
  49. Passador L., Cook J. M., Gambello M. J., Rust L., Iglewski B. H.. 1993; Expression of Pseudomonas aeruginosa virulence genes requires cell-to-cell communication. Science260:1127–1130 [CrossRef][PubMed]
    [Google Scholar]
  50. Peiris V., Oppenheim B. A.. 1993; Antimicrobial activity of cytotoxic drugs may influence isolation of bacteria and fungi from blood cultures. J Clinical Pathol46:1124–1125 [CrossRef]
    [Google Scholar]
  51. Petrova O. E., Sauer K.. 2012; Dispersion by Pseudomonas aeruginosa requires an unusual posttranslational modification of BdlA. Proc Natl Acad Sci U S A109:16690–16695 [CrossRef][PubMed]
    [Google Scholar]
  52. Phippen C. W., Mikolajek H., Schlaefli H. G., Keevil C. W., Webb J. S., Tews I.. 2014; Formation and dimerization of the phosphodiesterase active site of the Pseudomonas aeruginosa MorA, a bi-functional c-di-GMP regulator. FEBS Lett588:4631–4636 [CrossRef][PubMed]
    [Google Scholar]
  53. Purcell E. B., McKee R. W., McBride S. M., Waters C. M., Tamayo R.. 2012; Cyclic diguanylate inversely regulates motility and aggregation in clostridium difficile. J Bacteriol194:3307–3316 [CrossRef][PubMed]
    [Google Scholar]
  54. Qin Z., Ou Y., Yang L., Zhu Y., Tolker-Nielsen T., Molin S., Qu D.. 2007; Role of autolysin-mediated DNA release in biofilm formation of Staphylococcus epidermidis. Microbiology153:2083–2092 [CrossRef][PubMed]
    [Google Scholar]
  55. Rasamiravaka T., Labtani Q., Duez P., El Jaziri M.. 2015; The formation of biofilms by Pseudomonas aeruginosa: a review of the natural and synthetic compounds interfering with control mechanisms. Biomed Res Int2015:759348 [CrossRef][PubMed]
    [Google Scholar]
  56. Rostas K., Morton S. J., Picksley S. M., Lloyd R. G.. 1987; Nucleotide sequence and LexA regulation of the Escherichia coli recN gene. Nucleic Acids Res15:5041–5049 [CrossRef][PubMed]
    [Google Scholar]
  57. Roy A. B., Petrova O. E., Sauer K.. 2012; The phosphodiesterase DipA (PA5017) is essential for Pseudomonas aeruginosa biofilm dispersion. J Bacteriol194:2904–2915 [CrossRef][PubMed]
    [Google Scholar]
  58. Rybtke M., Berthelsen J., Yang L., Høiby N., Givskov M., Tolker-Nielsen T.. 2015; The LapG protein plays a role in Pseudomonas aeruginosa biofilm formation by controlling the presence of the CdrA adhesin on the cell surface. Microbiologyopen4:917–930 [CrossRef][PubMed]
    [Google Scholar]
  59. Rybtke M. T., Borlee B. R., Murakami K., Irie Y., Hentzer M., Nielsen T. E., Givskov M., Parsek M. R., Tolker-Nielsen T.. 2012; Fluorescence-based reporter for gauging cyclic di-GMP levels in Pseudomonas aeruginosa. Appl Environ Microbiol78:5060–5069 [CrossRef][PubMed]
    [Google Scholar]
  60. Sambanthamoorthy K., Gokhale A. A., Lao W., Parashar V., Neiditch M. B., Semmelhack M. F., Lee I., Waters C. M.. 2011; Identification of a novel benzimidazole that inhibits bacterial biofilm formation in a broad-spectrum manner. Antimicrob Agents Chemother55:4369–4378 [CrossRef][PubMed]
    [Google Scholar]
  61. Sharma G., Rao S., Bansal A., Dang S., Gupta S., Gabrani R.. 2014; Pseudomonas aeruginosa biofilm: potential therapeutic targets. Biologicals42:1–7 [CrossRef][PubMed]
    [Google Scholar]
  62. Spangler C., Böhm A., Jenal U., Seifert R., Kaever V.. 2010; A liquid chromatography-coupled tandem mass spectrometry method for quantitation of cyclic di-guanosine monophosphate. J Microbiol Methods81:226–231 [CrossRef][PubMed]
    [Google Scholar]
  63. Stover C. K., Pham X. Q., Erwin A. L., Mizoguchi S. D., Warrener P., Hickey M. J., Brinkman F. S., Hufnagle W. O., Kowalik D. J. et al. 2000; Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature406:959–964 [CrossRef][PubMed]
    [Google Scholar]
  64. Tacar O., Sriamornsak P., Dass C. R.. 2013; Doxorubicin: an update on anticancer molecular action, toxicity and novel drug delivery systems. J Pharm Pharmacol65:157–170 [CrossRef][PubMed]
    [Google Scholar]
  65. Tolker-Nielsen T.. 2014; Pseudomonas aeruginosa biofilm infections from molecular biofilm biology to new treatment possibilities. APMIS Supp138:1–51[CrossRef]
    [Google Scholar]
  66. Tseng B. S., Zhang W., Harrison J. J., Quach T. P., Song J. L., Penterman J., Singh P. K., Chopp D. L., Packman A. I. et al. 2013; The extracellular matrix protects Pseudomonas aeruginosa biofilms by limiting the penetration of tobramycin. Environ Microbiol15:2865–2878 [CrossRef][PubMed]
    [Google Scholar]
  67. Wahl M., Goecke F., Labes A., Dobretsov S., Weinberger F.. 2012; The second skin: ecological role of epibiotic biofilms on marine organisms. Front Microbiol3:292 [CrossRef][PubMed]
    [Google Scholar]
  68. Wei Q., Ma L. Z.. 2013; Biofilm matrix and its regulation in Pseudomonas aeruginosa. Int J Mol Sci14:20983–21005 [CrossRef][PubMed]
    [Google Scholar]
  69. Wenzel R. P.. 2007; Health care-associated infections: major issues in the early years of the 21st century. Clin Infect Dis1:S85–S88 [CrossRef][PubMed]
    [Google Scholar]
  70. Whitchurch C. B., Tolker-Nielsen T., Ragas P. C., Mattick J. S.. 2002; Extracellular DNA required for bacterial biofilm formation. Science295:1487 [CrossRef][PubMed]
    [Google Scholar]
  71. Yang L., Barken K. B., Skindersoe M. E., Christensen A. B., Givskov M., Tolker-Nielsen T.. 2007; Effects of iron on DNA release and biofilm development by Pseudomonas aeruginosa. Microbiology153:1318–1328 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000354
Loading
/content/journal/micro/10.1099/mic.0.000354
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error